Institut für Fertigungstechnik und Qualitätssicherung

Aktuelle Projekte

Ressourceneffiziente Fertigung von 3D-Geometrien in Kaltschlagkernen durch ultraschallgestütztes elektrochemisches Präzisionsabtragen - ReKarion
Laufzeit: 01.05.2024 bis 30.04.2027

Im Rahmen des Projekts soll eine Technologie entwickelt werden, die es ermöglicht 3D-Geometrien und Mikrostrukturen durch elektrochemisches Abtragen in Kaltschlagkernen aus Hartmetall-Werkstoffen einzubringen und die bisher eingesetzte Prozesskette zu substituieren. Die bisherigen Forschungsarbeiten haben gezeigt, dass insbesondere die Verwendung von gepulstem Strom eine wesentlich größere Wirkung auf das Abtragergebnis bei Hartmetallen besitzt. Diese Wirkung ist im Vergleich zum Abtragen von herkömmlichen Metallen hochgradig nichtlinear und nicht skalierbar. Aus diesem Grund stehen im Projekt hochpräzise Pulsströme im Bereich von 10 Hz bis 60 Hz zur ressourceneffizienten Fertigung von 3D-Geometrien in Kaltschlagkernen im Mittelpunkt.

Dieses Projekt wird vom Bundesministerium für Wirtschaft und Klimaschutz (BMWK) aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Projekt im Forschungsportal ansehen

DFG-Forschungsgroßgerät: Bearbeitungsstation zum elektrochemischen Präzisionsabtragen
Laufzeit: 01.02.2024 bis 31.01.2027

Aufgrund des breiten Anwendungsspektrums des EC-Abtragens in Automotive, Luft- und Raumfahrt, Medizintechnik sowie Werkzeug- und Formenbau umfasst die Bearbeitungsstation zum EC-Präzisionsabtragen eine notwendige Ausstattung mit Zusatzkomponenten, die die Erforschung grundlegender Fragestellungen bis hin zur angewandten Forschung entlang der Wertschöpfungskette von Produkten ermöglicht. Das EC-Präzisionsabtragen basiert auf dem Abtragen von metallischen Werkstoffen mit gepulstem Gleichstrom und oszillierender Kathode. Insbesondere durch die verfahrensbedingten Vorteile, wie schädigungsfreie Oberflächen, hohe Oberflächengüte und gratfreie Bearbeitung, steht das EC-Präzisionsabtragen im Fokus für hochbeanspruchte Bauteile sowie Präzisionsbauteile deren Oberflächen nicht durch das Fertigungsverfahren beeinflusst werden dürfen. Neben der Erforschung des grundlegenden werkstoffspezifischen Abtragmechanismus des EC-Präzisionsabtragens werden ressourceneffiziente EC-Technologien, Prozessbeherrschung des EC-Präzisionsabtragens durch Simulation sowie Schnittstellen und Datenketten für digitale Zwillinge von EC-Präzisionsabtragprozessen Forschungsschwerpunkte am Lehrstuhl für Fertigungstechnik mit Schwerpunkt Trennen sein.

Dieses Gerät wird gefördert durch die Deutsche Forschungsgemeinschaft (DFG) mit Projektnummer 467011871.

Projekt im Forschungsportal ansehen

DFG-Forschungsgroßgerät: Bearbeitungsstation zur Präzisionsfunkenerosion
Laufzeit: 01.02.2024 bis 31.01.2027

Die Präzisionsfunkenerosion ist ein abtragendes Verfahren der Präzisions- und Mikrofertigungstechnik, welches zur Herstellung von Werkzeugen und Maschinenelementen mit höchsten Präzisionsanforderungen eingesetzt wird. Insbesondere durch die verfahrensbedingten Vorteile, wie Bearbeitung unabhängig von den mechanischen Werkstückeigenschaften und Gratfreiheit, steht Präzisionsfunkenerosion im Fokus für hochbeanspruchte Bauteile sowie Produkte aus hochfesten Materialien. Unter Verwendung des beantragten Geräts können die Verfahrensvarianten funkenerosives Präzisionssenken, funkenerosives Präzisionsbohren und funkenerosives Präzisionsfräsen erforscht werden. Dadurch sind neben mikrofertigungstechnischen Fragestellungen im oberflächennahen Bereich auch Forschungsarbeiten im makroskopischen Bauteilbereich zu den Schwerpunkten präzise Formgebung, ressourceneffiziente Produktion und funktionelle Oberflächen realisierbar. Durch das beantragte Gerät werden Bauteile mit Bearbeitungsflächen bis zu einer Größenordnung von rund 600 cm² adressiert, welche durch einen notwendigen Pulsstrom von bis zu 80 A bearbeitet werden können. Neben der Erforschung des grundlegenden Prozessverständnisses der Präzisionsfunkenerosion werden ressourceneffiziente Technologien, Prozessbeherrschung der Präzisionsfunkenerosion durch Simulation sowie Schnittstellen und Datenketten für digitale Zwillinge der Präzisionsfunkenerosion Forschungsschwerpunkte am Lehrstuhl für Fertigungstechnik mit Schwerpunkt Trennen sein.

Dieses Gerät wird gefördert durch die Deutsche Forschungsgemeinschaft (DFG) mit Projektnummer 509924008.

Projekt im Forschungsportal ansehen

EUREKA-Verbundprojekt: Deep learning basierte Prozessüberwachung für komplexe Fertigungsaufgaben - DeepProMach
Laufzeit: 01.01.2024 bis 31.12.2026

Bei der spanenden Fertigung hängt die Oberflächenintegrität von vielen verschiedenen, voneinander abhängigen Einflussfaktoren wie Schnittparametern, Werkzeugverschleiß, Prozessdynamik etc. ab. Die Überwachung dieser Fertigungsprozesse mittels Sensorik und der rechtzeitige Eingriff bei instabilen Prozesszuständen kann dazu beitragen, den Prozess aufrecht zu halten. Die konventionelle Prozessüberwachung stößt jedoch schnell an ihre Grenzen, wenn es z. B. nur wenige oder gar keine Möglichkeiten gibt, etwaige Störgrößen auszumachen und entsprechende Merkmale in den Sensorsignalen zu identifizieren. So fehlt es bspw. bei der Fertigung von Einzelteilen und Kleinserien schlicht an Zeit, entsprechende Informationen zu sammeln und auszuwerten. Künstliche Intelligenz bietet die Möglichkeit, die bisherigen Grenzen im Bereich der Prozessüberwachung hinsichtlich einer zuverlässigen Merkmalserkennung in der spanenden Bearbeitung zu überwinden.
An dieser Stelle setzt das Forschungsprojekt DeepProMach in Zusammenarbeit mit Partnern in Ungarn an. Ziel ist die Entwicklung eines intelligenten Geräts, welches direkt in eine Werkzeugmaschine integriert werden kann. Es soll kritische Prozesszustände während der Fertigung erkennen, noch bevor diese Schäden verursachen können. Wird ein instabiler Zustand erkannt bzw. vorhergesagt, soll eine entsprechende Maßnahme ergriffen werden, wie bspw. die Kommunikation mit der Maschinensteuerung zur Anpassung der Prozessparameter oder die Benachrichtigung des Bedienpersonals der Werkzeugmaschine.

Dieses Projekt wird gefördert durch das Bundesministerium für Bildung und Forschung.

Projekt im Forschungsportal ansehen

Reduzierung der CO2-Emissionen durch den Einsatz von regenerativem Wasserstoff bei der Herstellung von Aluminium-Rundbolzen zur Profilherstellung – Untersuchung der Auswirkungen auf den Schmelzprozess - HyAlu
Laufzeit: 01.01.2024 bis 31.12.2026

Das Hauptziel des Projektes besteht in der Reduktion der CO2-Emissionen bei der Sekundäraluminiumherstellung bei gleichzeitiger Effizienzsteigerung durch den Einsatz von grünem Wasserstoff. Dies soll durch den kombinierten Einsatz von Wasserstoff zur Substitution von fossilem Erdgas und Sauerstoffanreicherung in der Verbrennungsluft in einem Schmelzofen zur Herstellung von Sekundäraluminium erreicht werden, da beide Gase bei der Elektrolyse zur Herstellung von grünem Wasserstoff anfallen. Hierbei müssen verschiedene Fragestellungen und Aspekte bzgl. der auftretenden Auswirkungen näher betrachtet sowie die entsprechenden Kompensationsmaßnahmen untersucht und entwickelt werden.

Dieses Projekt wird gefördert durch das Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages.

Projekt im Forschungsportal ansehen

Reduzierung der Radonbelastung in Gebäuden durch feuerhemmende und formvariable Abdichtung von Mediendurchführungen - fefodicht
Laufzeit: 01.04.2023 bis 30.09.2025

In der Gebäudetechnik werden gegenwärtig Rohr- und Leitungsdurchführungen für Strom-, Wasser- und Gasleitungen im Mauerwerk meist durch Kernbohrungen realisiert. Dabei müssen die Rohrwände mit dem Mauerwerk sehr stabil und langlebig abgedichtet werden und dabei sehr hohen Anforderungen genügen. Im Rahmen des Projektes soll daher ein 2-Komponenten-Klebstoff, welcher zum Verkleben von Glasscheiben und Karosserieteilen in der Automobilindustrie und im Schienenfahrzeugbau bekannt ist, zur Ringraumabdichtung verwendet und modifiziert werden. Dieser modifizierte 2-Komponenten-Klebstoff soll mit einem neuartigen Gerätesystem in die Luftzwischenräume von Schutzrohr und Wandmaterial eingebracht werden.

Dieses Projekt wird vom Bundesministerium für Wirtschaft und Klimaschutz (BMWK) aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Projekt im Forschungsportal ansehen

Endbearbeitung von metallischen AM-Bauteilen durch abtragende Fertigungsverfahren
Laufzeit: 01.03.2024 bis 31.05.2025

Im Rahmen der Studie soll der Forschungsbedarf im Bereich der Endbearbeitung metallischer, additiv gefertigter Bauteile durch abtragende Fertigungsverfahren ermittelt werden. Dazu sollen zunächst relevante, abtragende Fertigungsverfahren recherchiert werden, die für die Endbearbeitung von AM-Bauteilen infrage kommen. Als nächstes sollen aktuelle Herausforderungen und Bearbeitungsergebnisse übersichtlich zusammengefasst werden. Danach ist eine Gegenüberstellung der relevanten Fertigungsverfahren und die Zusammenfassung von Bauteilanforderungen in einer Verfahrensmatrix vorgesehen. In einem weiteren Schritt sollen erreichbare Oberflächen und Abtragraten für einen additiv gefertigten Stahlwerkstoff und einen schmelzmetallurgischen Stahlwerkstoff mit den Fertigungsverfahren funkenerosives Senken und elektrochemisches Präzisionsabtragen experimentell ermittelt und verglichen werden. Abschließend werden Handlungsempfehlungen für zukünftige Forschungsarbeiten aus den erzielten Ergebnissen abgeleitet.

Dieses Projekt wird von der Forschungsvereinigung Antriebstechnik e.V. gefördert.

Projekt im Forschungsportal ansehen

DIN SPEC 92006: Künstliche Intelligenz – Anforderungen an KI-Prüfwerkzeuge
Laufzeit: 01.01.2024 bis 30.04.2025

Diese DIN SPEC definiert den Begriff "KI-Prüfwerkzeuge" und legt Anforderungen an solche KI-Prüfwerkzeuge fest, die unter anderem zur Evaluierung z. B. der Robustheit, der IT-Sicherheit, der Verlässlichkeit und der Fairness verwendet werden.

Dieses Projekt wird vom Ministerium für Wirtschaft, Industrie, Klimaschutz und Energie des Landes Nordrhein-Westfalen gefördert.

Projekt im Forschungsportal ansehen

Silent Materials: Entwicklung einer Polymerbetonrezeptur zur Erhöhung der Strukturdämpfung mit zugehörender Positionier- und Fertigungseinheit zur numerisch berechneten Positionierung der Zuschlagstoffe
Laufzeit: 01.09.2021 bis 30.09.2024

Das Ziel des Projekts ist es, die Strukturdämpfung von (Präzisions-)Werkzeugmaschinen in deren
betriebsrelevanten Frequenzbereichen zu erhöhen und somit durch Schwingungen verursachte Fertigungsungenauigkeiten zu minimieren und somit die Maschinengenauigkeit zu steigern. Um dies zu erreichen, soll eine reaktionsharzbasierte Betonrezeptur entwickelt werden, die neben einer Polymermatrix aus Zuschlagstoffen besteht. Dabei wird ein Dämpfungsmaß mehr als 50 % und frequenzselektiv größer 80 % angestrebt. Zudem sollen weitere physikalische Eigenschaften, wie die Steifigkeit und die Wärmeleitung, über die Wahl der Zuschlagstoffe eingestellt werden können. Das Herzstück, der im Rahmen dieses Projekts zum Aufbau der Kompositmaterialien zu entwickelnden Positionier- und Fertigungseinheit, ist ein neukonfigurierter Extruder mit Zuschlagsstoffmagazin, der zur additiven Fertigung von Maschinenkomponenten mit einem Volumen bis zu 1 m³ aus einem reaktionsharzsystembasierten Beton Einsatz finden soll. Die Positioniergenauigkeit der Positionier- und Fertigungseinheit hinsichtlich des Ablegens der Zuschlagstoffe liegt bei mindestens ±0,1 mm.

Dieses Projekt wird vom Bundesministerium für Wirtschaft und Klimaschutz (BMWK) aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Projekt im Forschungsportal ansehen

Drahtloses Sensorsystem zur langzeitlichen Überwachung von hydrothermischen Einflüssen auf Fensterholzrahmen
Laufzeit: 01.03.2022 bis 31.08.2024

Im Rahmen des Projekts soll eine Technologie entwickelt werden, welche es ermöglicht kritische Umgebungszustände für verbaute Fenster bzw. Türen aus Holz zu erkennen, um dadurch verursachte Schäden zu verhindern und ungerechtfertigte Reklamationsansprüche zu vermeiden. Hintergrund sind die auf Baustellen häufig schwankenden und extremen Bedingungen bzgl. Temperatur und Feuchtigkeit, welche irreparable strukturelle und geometrische Veränderungen der Holzelemente zur Folge haben können. Dazu soll der komplexe Zusammenhang zwischen den einflussnehmenden Parametern Temperatur und Feuchtigkeit und den aus dessen zeitlichen Verlauf resultierenden Schäden untersucht werden. Ziel ist die Integration eines eigens entwickelten Sensorsystems in die Holzelemente, welches die Umgebungsbedingungen aufzeichnet, dokumentiert, auswertet und signalisiert, wenn es zu einem kritischen Zustand kommt.

Dieses Projekt wird vom Bundesministerium für Wirtschaft und Klimaschutz (BMWK) aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Projekt im Forschungsportal ansehen

Effiziente Fertigung von Hochdrehmomentkeilwellen mit erhöhter Dauerfestigkeit - effiKeD
Laufzeit: 01.07.2021 bis 30.06.2024

Die Zielstellung des Projekts effiKeD ist es, eine effiziente Fertigung von Keilwellen mit erhöhter Dauerfestigkeit zu erforschen. Konkret sollen technische Möglichkeiten zur Steigerung der Effizienz und zur gezielten Modifikation der Bauteilrandschicht bei der Herstellung von Keil- und Zahnradwellen erforscht werden. Zur Erreichung der Zielstellung wird eine Verfahrenskombination aus Zerspan- und Umformverfahren angestrebt.

Dieses Projekt wird vom Bundesministerium für Wirtschaft und Klimaschutz (BMWK) aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Projekt im Forschungsportal ansehen

Ermittlung der technologischen Potentiale des elektrochemischen Präzisionsabtragens (PECM) für Verzahnungsgeometrien - PECM-Pot
Laufzeit: 01.04.2023 bis 30.06.2024

Das Grundprinzip aller fertigungstechnischen Umsetzungen des elektrochemischen (EC) Abtragens besteht in dem anodischen Auflösen eines metallischen Werkstücks an dessen Grenzfläche zu einem flüssigen Ionenleiter, dem Elektrolyt, unter dem Einfluss von elektrischem Ladungstransport. Das Abtragprinzip ermöglicht es, metallische Werkstücke unabhängig von deren mechanischen Eigenschaften zu bearbeiten. Darüber hinaus erfolgt der Abtrag kraftfrei und bei maximalen Prozesstemperaturen von ca. 80°C. Damit ist im Vergleich zu konkurrierenden trennenden Fertigungsverfahren wie Fräsen, Schleifen, Funkenerosion oder Laserstrahlabtragen eine wirtschaftliche Bearbeitung komplexer Geometrien mit schädigungsfreien Oberflächen möglich. Durch eine Kombination eines gepulsten Stroms mit einem oszillierenden Arbeitsspalt kann die Abbildegenauigkeit des EC-Abtragens bis in den einstelligen Mikrometerbereich gesteigert werden. Daraus leiten sich technologische Potentiale des elektrochemischen Präzisionsabtragens für Verzahnungsgeometrien ab, die im Rahmen des Projekts ermittelt werden sollen.

Dieses Projekt wird von der Forschungsvereinigung Antriebstechnik e.V. gefördert.

Projekt im Forschungsportal ansehen

Werkstoffliche Grundlagenuntersuchungen für den Einsatz von regenerativem Wasserstoff bei der Herstellung von Sekundäraluminium - H2-Alu
Laufzeit: 01.10.2022 bis 30.06.2024

Aluminium ist ein unverzichtbares und zukunftsorientiertes Material mit zahllosen Einsatzgebieten, wie der Verkehrs- und der Verpackungsindustrie sowie dem Bauwesen und dem klassischen Maschinenbau. Das übergeordnete Ziel des Projekts H2-Alu besteht in der Senkung der CO2-Emissionen während der Herstellung von Sekundäraluminium und dessen gießtechnologischer Verarbeitung bei gleichzeitiger Effizienzsteigerung des Gesamtprozesses. Damit werden die Klimaziele der Bundesregierung und das Erreichen einer CO2-Neutralität für alle Industriebereiche deutlich vorangetrieben. Die Ziele des Projekts sollen durch den kombinierten Einsatz von grünem H2 zur Substitution von fossilem Erdgas und einer O2-Anreicherung in der Verbrennungsluft in einem Schmelzofen zur Herstellung von Sekundäraluminium erreicht werden. Die gegenseitige Affinität von H2 und Aluminium - dem industriell wichtigsten Nicht-Eisen-Metall der Welt - und die einhergehenden Auswirkungen auf die Qualität (bspw. auftretende Gasporositäten) der zu fertigenden Gussteile ist allgemein bekannt, die genauen legierungsspezifischen Auswirkungen jedoch noch nicht genau geklärt. Deshalb soll untersucht werden, ob die geplante H2-Zumischung zur Beeinträchtigung der Schmelz- und Gussteilqualität führt. Die zentralen Fragen umfassen die Analyse der auftretenden Auswirkungen des H2 auf die Produktqualität sowie die Entwicklung von Kompensationsmaßnahmen zur Erhaltung des qualitativen Ist-Zustands als Mindestanforderung. Dazu sollen werkstoffwissenschaftliche Grundlagenuntersuchungen der Beeinflussung des Produkts Aluminium entlang einer realen Herstellungskette anhand umfassender Laboruntersuchungen (Metallographie, Computertomographie, Härtemessung, Zugversuch, Schmelzgasextraktion, usw.) durchgeführt werden. Ein zu entwickelndes CFD-Simulationsmodul soll den H2-Einfluss auf den Werkstoff Aluminium bei der Berechnung der gießtechnologischen Vorgänge berücksichtigen und die Auswirkungen prognostizieren.

Dieses Projekt wird gefördert durch das Bundesministerium für Bildung und Forschung.

Projekt im Forschungsportal ansehen

Effiziente 3D-Präzisionsformgebung von Permanentmagneten für rastmomentarme Elektroantriebe durch elektrochemisches Abtragen - PerMinos2
Laufzeit: 01.06.2021 bis 31.05.2024

Das übergeordnete Projektziel ist die Entwicklung einer ECM-Technologie und die Realisierung einer geeigneten modularen Vorrichtung für die Integration von Vorrichtungsmodulen zur Bearbeitung von Permanentmagneten für Elektroantriebe.

Dieses Projekt wird vom Bundesministerium für Wirtschaft und Klimaschutz (BMWK) aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Projekt im Forschungsportal ansehen

Letzte Änderung: 13.12.2023 - Ansprechpartner: