Institut für Mechanik
Aktuelle Projekte
Kompetenz in der Elektromobilität: Teilprojekt "Digitaler Zwilling für Antriebsstrangkonzepte (DZA) mit variabler Modellierungstiefe"
Laufzeit: 01.01.2024 bis 31.12.2027
Das Projekt zielt auf die Umsetzung eines digitalen Zwillings im Bereich des Antriebsstrangs ab und führt verschiedene methodische Vorarbeiten im Bereich der Komponentenentwicklung (Wechselwirkung zwischen Struktur- und Elektrodynamik sowie Akustik in E-Komponenten) mit Gesamtsystembetrachtungen zusammen. Der Hauptfokus der Arbeiten liegt hierbei auf Simulationsmodellen für Gleichlaufgelenke in den Antriebssträngen, die infolge der E-Mobilität anderen Lasten unterworfen sind.
Dabei werden Fragestellungen bzgl. der Identifikation von Anregungsmechanismen in den Gleichlaufgelenken sowie Prozessparameter zu deren Einflussnahme untersucht. Die dafür notwendigen experimentellen Untersuchungen erfolgen an einem Gelenkwellen- sowie einem Road-to-Rig Prüfstand.
Die relevanten Arbeitspakete lassen sich wie folgt zusammenfassen:
- Aufnahme von Messdaten (Kräfte, Drehmomente, Beugewinkel, Schwingungen) des Antriebsstrangs in Zusammenarbeit mit dem Institut für Kompetenz in AutoMobilität (IKAM) & dem Center for Method Development (CMD)
- Entwicklung einer detaillierten Berechnungsmethode des Antriebsstrangs mit Fokus auf die Gleichlaufgelenke
- Reduzierung des Komplexitätsgrads zur Implementierung der Methode in den typischen Entwicklungsablauf
MoPeFf-KIDZ - Modularer Peristaltischer Flächenförderer mit KI-basiertem Digitalen Zwilling für Kleinstsendungen
Laufzeit: 01.04.2024 bis 31.12.2027
Der Modulare Peristaltische Flächenförderer (MPFF) ist ein gänzlich neuartiges Gerät, das erstmals konzeptionell die Vereinzelung und Sortierung von biegeweichen Kleinstendungen (Polybags) erlaubt und damit eine Alternative zur kostenintensiven händischen Verarbeitung darstellt. Erstmalig soll parallel zur Entwicklung des realen MPFF ein KI-basierter Digitaler Zwilling (DZ) entwickelt werden, der auf Basis von KI-optimierten Simulationsmodellen Vorhersagen des Systemverhaltens und eine automatisierte Parametrierung der Aktoren und Sensordatenverarbeitung erlaubt.
Nachhaltige Polymermaterialien für 3D-gedruckte Bauteile
Laufzeit: 01.01.2024 bis 31.10.2027
Simulation additiv gefertigter Strukturen auf der Basis experimentell ermittelter Parameter (Teilprojekt OVGU): Am Institut für Werkstoffe, Technologien und Mechanik an der OVGU werden Computermodelle von zu fertigenden Strukturen erstellt. Der additive Fertigungsprozess wird mittels numerischer Methoden simuliert, hierbei werden insbesondere experimentell ermittelte Materialparameter und die intermediäre Kristallisationskinetik der verwendeten Polymere berücksichtigt, wobei letztere biobasiert und -abbaubar sind. In die Simulation gehen insbesondere die in Halle ermittelten mechanischen und rheologischen Parameter ein. Auf Simulationsergebnissen aufbauend werden
(1) die Konstruktion der Strukturen und
(2) die Parameter des Druckprozesses
angepasst. Die Bauteile erfüllen die mechanischen und geometrischen Anforderung von Spezialanwendungen.
Integration physikalisch motivierter Materialmodelle für gefüllte Elastomere in Mehrkörpersimulationen hochdynamischer Systeme
Laufzeit: 01.05.2024 bis 30.04.2027
Das DFG geförderte Forschungsprojekt setzt sich zum Ziel, die numerische Prädiktionsfähigkeit für technische Systeme zu erhöhen, indem eine ganzheitliche Simulationsmethodik implementiert wird, die eine effiziente Kopplung zwischen einer Mehrköpersimulation und einem nichtlinearen FE-Modell ermöglicht. Eine Erweiterung des physikalisch motivierten dynamischen Flokkulationsmodells wird dabei genutzt, um das nichtlineare Materialverhalten elastomerer Lagerelemente vollumfänglich und präzise abzubilden. Dabei stehen vor allem die Eigenschaftsänderungen der Lager unter mehrachsiger Belastung im Fokus, welche bei derzeitigen Modellierungsansätzen häufig vernachlässigt werden. Da die Einbindung eines detaillierten FE-Modells zu einer Steigerung der notwendigen Rechenressourcen führt, werden in diesem Projekt verschiedene Detaillierungsstufen der Solverkopplung implementiert und analysiert, mit dem Ziel eine Reduktion der Rechenzeit unter akzeptablen Genauigkeitseinbußen zu erlauben. Die daraus resultierenden unterschiedlichen Komplexitätsstufen der entwickelten Methodik werden mit den herkömmlichen Modellierungsstrategien umfassend verglichen. Es wird eine Bewertung der einzelnen Kopplungsstrategien bezüglich des Implementierungs- und Parametrisierungsaufwands sowie der physikalischen Interpretierbarkeit und der erforderlichen Rechenressourcen vorgenommen. Dabei werden die entwickelten und validierten FE-Modelle basierend auf dem DFM auch auf ihre Eignung hin untersucht, in welchem Umfang und mit welcher Zuverlässigkeit sich einmalig bestimmte Materialparameter auf weitere Geometrien und Belastungsszenarien übertragen lassen. Abschließend findet eine Beurteilung der Genauigkeit aller untersuchter Strategien zur Kopplung der FEM und MKS mit Hilfe von Versuchsergebnissen realer Applikationen statt. Die Einbindung der FEM in die MKS erfolgt dazu sowohl direkt über verschiedene Solverkopplungen als auch indirekt durch die Generierung eines Kennfelds bzw. eines Surrogate-Modells mit Hilfe des FE-Modells zur Nutzung innerhalb der MKS. Als erstes Anwendungsbeispiel dient eine Laborzentrifuge, deren Schwingungsamplituden sowie Betriebsresonanzen gemessen und mit den numerisch erzielten Ergebnissen der jeweiligen Kopplungsstrategien verglichen werden. Des Weiteren wird die entwickelte Methodik im Rahmen einer Schwingungsanalyse von Fahrwerkskomponenten eines Elektrofahrzeugs angewendet und validiert.
Ein vereinfachtes Model der gekoppelten linearen anisotropen Verzerrungsgradientenelastizität und seine Anwendungen auf die Lösung verschiedener Randwertprobleme
Laufzeit: 01.01.2024 bis 31.12.2026
Die Ziele des Forschungsprojektes sind die Entwicklung vereinfachter anisotroper konstitutiver Beziehungen innerhalb der gekoppelten Verzerrungsgradientenelastizität, die Bestimmung entsprechender Skalenparameter, die Anwendung einer solchen Modellierung auf die Lösung einiger Randwertprobleme, bei denen die klassische Elastizität ihre Grenzen hat, und der Nachweis, dass diese Grenzen überwindet werden können. Im Einzelnen wird untersucht:
- Homogenisierungsprobleme, die den Größeneffekt berücksichtigen, werden betrachtet. Insbesondere werden Grenzwerte wie bei Voigt und Reuss und wie bei Hashin-Shtrikman für partikelförmige Verbundwerkstoffe unter Verwendung der Prinzipien des Minimums der potentiellen Energie und der komplementären Energie erhalten, effektive Eigenschaften von faserverstärkten und partikelförmigenVerbundwerkstoffen werden im Rahmen der gekoppelten anisotropen
Verzerrungsgradientenelastizität bewertet.
- Rissprobleme bei ebener Verzerrung, d.h. Rissprobleme mit Mode I, II und III, sowie Probleme
mit einem Riss am Rand werden untersucht.
- Probleme mit konzentrierten Kräften, insbesondere mit einer an der Oberflächebelasteten Halbebene, einer im Inneren und am freien Rand derPlatte aufgebrachten Kraft werden im Rahmen der Theorie analysiert.
Für alle Probleme wird der Einfluss des Kopplungsterms und der Anisotropie der Materialeigenschaften auf die Lösungen, die Abweichung der Lösungen von den Vorhersagen der klassischen Elastizität und von der ungekoppelten Verzerrungsgradientenelastizität untersucht. Die Ergebnisse werden im Kontext der in der Literatur verfügbaren Ergebnisse verglichen und
analysiert.
Vollständig digitalisierte & vereinheitlichte Materialmodellierung zur Echtzeitanalyse des prozess- & betriebsbedingten Deformations- & Schädigungsverhaltens innerhalb digitaler Bauteilzwillinge, Akronym DigitalModelling
Laufzeit: 01.01.2024 bis 31.12.2026
Das Verbundvorhaben DigitalModelling soll den Transfer zwischen akademischer Forschung und
industrieller Anwendung auf dem Gebiet der Materialmodellierung, also der mathematischen und
rechnerischen Beschreibung des Verhaltens von Werkstoffen und Bauteilen unter thermomechanischen Beanspruchungen, erheblich erleichtern und beschleunigen. Hierfür haben sich die einzelnen Teilvorhabenzum Ziel gesetzt, wiederkehrende Hindernisse zum industriellen Einsatz einer fortschrittlichenMaterialmodellierung abzuschaffen. Gleichzeitig wird dadurch ermöglicht, dass die verschiedenen, bereitsverfügbaren Ansätze der Materialmodellierung erstmals und im Rahmen der Plattform Material Digital(PMD) gebündelt und modular aufbereitet vorliegen werden, so dass eine auf den spezifischenAnwendungsfall zugeschnittene, flexible Auswahl und Modellsynthese ermöglicht wird. Das Teilvorhaben an der OvGU Magdeburg adressiert Datenanalyse, Klassifizierung und Daten „Pre-Processing“,Konstitutive Modellbausteine, Erarbeitung von Identifikationsprozeduren sowie das Unit- und Workflow Testing.
Zuverlässigkeitsbewertung metallischer Drahtverbindungen der Leistungselektronik
Laufzeit: 01.02.2021 bis 31.12.2026
Durch die Digitalisierung und die Energiewende hat der Bedarf und die Komplexität von elektronischen Bauteilen, wie Sensoren oder Steuergeräte, erheblich zugenommen. Bei der Übertragung von elektrischen Signalen und bei der elektrischen Kontaktierung wird in nahezu allen Wirtschaftszweigen als Basistechnologie das Drahtbonden eingesetzt. Wenn es hauptsächlich um die Übertragung elektrischer Leistungen geht, werden meist hochreine Aluminium-Dickdrähte mit Drahtdurchmessern zwischen 125 μm und 500 μm eingesetzt. Die Drähte verbinden durch sogenannte Drahtbrücken Substrate verschiedener Materialien miteinander, welche unterschiedliche Wärmeausdehnungskoeffizienten besitzen. Häufig sind die Drähte im Betrieb externen Temperaturschwankungen, sowie zyklischen Belastungen ausgesetzt, die in verschiebungsgesteuerten Ermüdungsbelastungen resultieren können. Dies kann zu Rissen in den Drähten und damit zu einem Komplettausfall des Bauteils führen. [1] Rein konstruktiv kann das Versagen der Drähte in hochbelasteten Komponenten aktuell noch nicht verhindert und auch nicht sicher vorhergesagt werden. Aus diesem Grund ist es das Ziel der vorliegenden Promotion, das reale Verhalten der Drähte unter Einbezug des anisotropen elastischplastischen Materialverhaltens mechanisch zu charakterisieren, numerisch zu beschreiben und das Einsatzverhalten vorherzusagen. Im Rahmen der Promotion wird eine mechanische Bewertung der Drähte anhand von Zug-, Druck- und Biegeversuchen durchgeführt. Die daraus gewonnenen Ergebnisse werden mit der Mikrostruktur der Drähte korreliert und es werden geeignete Materialmodelle für die numerische Beschreibung mittels Parameteroptimierung angepasst. Zusätzlich wird das Ermüdungsverhalten der Drähte untersucht und die Zuverlässigkeit von gebondeten Drahtbrücken unter Betriebsbedingungen mit stochastischen Modellierungen bewertet. Dabei wird auch der Einfluss der Temperatur und der Stromdichte auf die Drähte, wie auch ihre elektrische Leitfähigkeit betrachtet. Alle gewonnenen Kenntnisse und Modelle sollen später für die Entwicklung neuer Hochleistungslegierungen mit verbesserter Temperaturstabilität und besserer elektrischer Leitfähigkeit, sowie für die Entwicklung alternativer Drahtherstellungsrouten genutzt werden.
Peridynamic Modeling, Identification and Validation of Laminates Responses Beyond Damage Initiation
Laufzeit: 01.12.2022 bis 30.11.2026
With the development of advanced manufacturing technologies,composite materials and laminates are widely used in engineering asthey are advantageous over traditional materials. While the deformation behaviour up to the damage initiation can be predicted bythe classical continuum mechanics with satisfactory accuracy,analysis of progressive failure beyond the critical damage state is still a major challenge. Peridynamics (PD) as a non-local continuum mechanics theory is very suitable for analyzing discontinuous problems such as material failure, crack initialization, crack propagation, crack patterns formation and crack interactions. Based on the recent activities of the research group (RG) in OvGU Magdeburg on PD modeling of crack patterns in float glass,identification of long-range forces in peel films, this project aims to contribute novel formulations for composite laminate structures to offer engineers an alternative solution to tackle fracture problems. A novel PD damage constitutive modeling framework to describedamage initiation, damage growth and crack propagation in a unifiedmanner will be developed by RG in OvGU. Based on the previous research on float glass, the available experimental data will be appliedto identify material parameters, to capture initial distribution of flawsand to describe damage patterns in ring bending tests on glassplates. For the validation, ball drop tests will be simulated and results will be compared with experimental data. In addition, non-local models will be developed and calibrated in OvGU to capture long-range
forces observed in peel tests. By the use of the layer-wise approach the developments will be consolidated to formulate a new PD theory for laminates subjected to severe loading in the post-critical damage regime. Based on the available experimental data on laminated glass, a benchmark problem will be developed and solved to verify the theoretical developments as well as analytical and
numerical solution procedures.
Metallic phase change material‐composites for thermal energy management
Laufzeit: 01.10.2023 bis 30.09.2026
Thermal Energy Storage (TES) systems can give strategic contribution to efficiency and flexibility of intermittent power sourcesof various nature, but their temporal modulation up to long charge-discharge cycles passes through the tuning the thermal properties of the materials exchanging heat with fluids in TES systems.M-TES project proposes an innovative approach to manufacture by a low-cost one step process, granules of composite metallic Phase Change Materials, m-PCMs. Thus m-PCMs are form stable over the time. They can be tailored in term of enthalpy-temperature relationships and heat transfer properties, and mixed in different amounts to meet the local material requirement for flexible TES systems.The 3-year M-TES project will be focused on immiscible alloy systems based on recycled Al-Si casting alloys and Sn, with no need of Critical Raw Material, adding a new option for re-use and recycle them. M-TES project will: (I) identify thermophysical requirements form-pcms service, (II) study alloys surface and wetting properties to support the (III) study of suitable process conditions, (iv) obtainthermal/mechanical granule properties. A grained system will be tested as proof-of-concept, and (VI) its mechanical and heat transfer potential will be modeled to support further development, toward higher TRL and other alloys. The multidisciplinary project objectives will be accomplished thanks to the knowledge/equipment complementarity of partners: POLIMI, CNR, KIT, OVGU. They will work in strict interaction within and between WPs. The young researchers hired for the project will be forged to curious multidisciplinary and deep understanding. M-TES dissemination plan will spread results preferring openactivities, starting from scientific papers/conferences, widening to open science events for technicians/PhD students, up to the
general public.
Experimental and analytical investigation of further developments of Fatigue Damage Spectrum (FDS)
Laufzeit: 01.04.2022 bis 30.06.2026
The Fatigue Damage Spectrum (FDS) is a popular method used in industry to execute accelerated vibration testing for mechanical components and structures. This method uses compressed test signals in time domain to derive vibrational velocity which in turn is used for obtaining induced mechanical stresses. Taking the SN-curve properties (slope and intercept) of the material and linear damage accumulation model (Palmgren/Miner) in account, the damage for the component is derived in frequency domain. The core of the process now comes into action by reducing the time of the test signal and preserving the damage content in each frequency band constant. The accelerated signal is converted back into time signal from frequency domain using a distribution function. This process ensures keeping the damage content in each frequency band constant while accelerating testing times on testbenches.
The process uses the relationship between vibrational velocity and mechanical stress to deduce the damage. Other vibrational parameters like acceleration for the dependency of mechanical stresses has also been investigated in recent times. However, the choice of parameters is the sole responsibility of the user. This study aims to aid the user in the choice of parameter by conducting experiments on an electrodynamic shaker and analysing the dependency of mechanical stresses on various vibrational parameters.
Additionally, the question arises how would the results of FDS change if SN-curve parameters are varied for the same material (e.g. from FKM Guidelines, MIL standard or even from an experimentally determined SN-curve). The limits of FDS are investigated in this scenario.
The transformation of the accelerated signal from frequency to time domain is undertaken with the help of a distribution function (often assumed to be Gauss) and a random phase distribution of the load amplitudes. In reality, loads are more often than not, non-Gaussian. From a new perspective, consideration of distribution functions like Lalanne, Dirlik as well as higher statistical moments like skewness and kurtosis are proposed for the reconstruction of the accelerated time signal. The research question arises here to which extent is the general assumption of a distribution function valid and if necessary which additional information is required to achieve a better consensus between simulated and experimental results.
Experiments are conducted on an electrodynamic shaker with samples of structural steel and electro-grade copper. In parallel, FEM simulations as well as spectral methods of damage calculation are used to compare experimental results.
SOFINA -Simulationsgestützte Optimierung von Flow-Divertern zur Behandlung intrakranieller Aneurysmen
Laufzeit: 01.04.2023 bis 31.03.2026
Ziel des Projekts ist die Erforschung von Möglichkeiten zur Optimierung der fluiddynamischen Behandlung intrakranieller Aneurysmen, um die Okklusionszeit zu verkürzen, den Bedarf an Nachbehandlungen zu reduzieren sowie die Gefahr von Rupturen zu eliminieren. Dazu sollen zum einen neuartige, neurovaskuläre Implantate mit verbesserten flussmodellierenden Eigenschaften erarbeitet werden (Zielwerte: lokal reduzierte Porosität, optimierte Anpassungsfähigkeit an die Anatomie). Mögliche individualisierte Lösungsansätze sind die Weiterentwicklung geflochtener Strukturen oder die Verwendung neuartiger Polymervliese auf der Trägerstruktur. Zum anderen werden “intelligente” Software-Tools entwickelt, die auf Basis einer virtuellen Katheterführung durch komplexe 3D-Gefäßmodelle von Patient*innen eine verbesserte Planung und Implantation ermöglichen. Dabei werden Verformungszustände sowohl des Katheters als auch des gecrimpten Implantats auf seinem Weg zum Gehirnaneurysma simuliert. Zur Abschätzung der Wirksamkeit (intra-aneurysmale Thrombosierung) des Implantats wird in Ergänzung dazu eine Blutflusssimulation durchgeführt. Anhand der Ergebnisse sollen den Interventionalist*innen vorab und während der Behandlung Hinweise zur Handhabung des Implantats bereitgestellt werden. Eine solche Software ermöglicht eine gezielte Optimierung der Implantateigenschaften, um bspw. lokalisationsabhängige Geschwindigkeits- und Wirbelstärkenabsenkungen, um bis zu 50 % gegenüber dem unbehandelten Zustand zu erzielen.
Peridynamic analysis of thin-walled structures in the inelastic range
Laufzeit: 01.01.2023 bis 31.12.2025
Peridynamics (PD) is a nonlocal theory without notion of differential line elements, the deformation
gradient, its higher gradients or gradients of internal state variables. Unlike the classical
continuum mechanics, where only local contact forces are considered, long-range internal forces of interaction between material points are introduced. As a result, the balance equations do not include
partial derivatives with respect to spatial coordinates. Therefore peridynamics is found to
be attractive for modeling highly heterogeneous deformation processes such as fracture. Many
recent numerical studies show the ability of the peridynamic theory to capture complex fracture
processes and instabilities, such as crack initiation, crack branching, crack kinking,
propagation of frictional cracks, crack interaction with initial heterogeneities, such as holes
and pores etc.
The aim of this PhD project is to develop novel peridynamic (PD) theories for rods, beams and thin platesto capture inelastic responses, in particular, damage and fracture phenomena. A novel
PD damage constitutive modelling framework to describe both damage initiation, damage growth
and crack propagation in a unified manner should be developed and utilized. Based on previous
research in the working group of Eingineering Mechanics, the available experimental data will be applied to calibrate the model. For the validation, bending tests will be simulated, and results will be
compared with experimental data. The following research questions will be addressed in the
work packages
• How to model thin-walled structural components with PD efficiently?
• How to consider crack initiation, crack growth and formation of crack patterns in a unified
PD damage model?
• How to incorporate the PD damage models into the theories of rods, beams and plates?
• How to calibrate non-local PD models from test data?
• How to model localized deformation and fracture phenomena in thin-walled structures within
the PD framework?
Modeling the Inelastic Behavior of High-Temperature Steels Exerted to Variable Loading Conditions
Laufzeit: 01.11.2023 bis 31.10.2025
Im Rahmen dieserArbeit wird das mechanische Verhalten der Hochtemperaturwerkstoffe und -bauteile numerischuntersucht. Hochtemperaturbauteile, wie sie z.B. in Kraftwerken zu finden sind, müssen sowohlthermischen als auch mechanischen Beanspruchungen standhalten. Durch das Hoch- und Runterfahrender Anlagen treten vor allem zyklische Lastprofile auf, die zwar maßgeblich für Ermüdungserscheinungensind, aber deren Simulation zu numerisch komplexen Zeitintegrationen mit
kleinen Schrittweiten führt. Der Zwei-Zeitskalen-Ansatz wird hier zur Modellierung eingesetzt,
mit der Grundidee, durch Entkopplung der Gleichungen separate Gleichungssysteme für die verschiedenen Zeitskalen zu schaffen und diese getrennt voneinander zu lösen.
Strategien zur dynamischen Adaption der Diskretisierung basierend auf höherwertigen Übergangselementen für die Analyse von Wellenausbreitungsvorgängen mittels Hochleistungsrechnern
Laufzeit: 01.11.2023 bis 31.10.2025
Methoden der adaptiven Netzverfeinerung (AMR) sind in vielen industriellen und auch wissenschaftlichen Anwendungen unbedingt erforderlich, um den numerischen Aufwand zu reduzieren und dadurch komplexe Problemstellungen überhaupt erst handhabbar zu machen. Betrachtet man jedoch die gegenwärtige Literatur zum Thema AMR, kristallisieren sich einige Unzulänglichkeiten heraus, die noch gelöst werden müssen. Um eine lokale Netzverfeinerung zu erreichen, müssen entweder hybride Netze bestehend aus Simplex- und Tensor-Produkt-Elementen oder Zwangsbedingungen genutzt werden. Beide Ansätze führen jedoch unweigerlich zu lokalen Genauigkeitsverlusten. Darüber hinaus werden in industriellen Anwendungen oft lineare Ansatzfunktionen verwendet, weshalb nur eine algebraische Konvergenz erzielt werden kann. Im wissenschaftlichen Umfeld gibt es selbstverständlich auch Ansätze für eine vollständige hp-Adaptivität. Diese Verfahren sind aber aufgrund ihrer Komplexität in der Implementierung auf Netze mit einem hängenden Knoten pro Elementkante/-fläche ausgelegt und weisen Schwächen in der Anwendung auf hoch dynamische Prozesse (explizite Zeitintegration) auf, da diagonale Massenmatrizen nicht verfügbar sind. Anzumerken ist, dass im Vergleich zu einfachen h-Verfeinerungen aber exponentielle Konvergenzraten erreicht werden können. Die genannten Probleme können durch höherwertige Übergangselemente, die auf der Basis der sogenannten gemischten (transfiniten) Interpolation hergeleitet werden, leicht beseitigt werden. Die Elementformulierung beruht auf Vierecks- bzw. Hexaederelementen im Referenzgebiet und kann beliebige Diskretisierungen miteinander koppeln. Im Prinzip können verschiedenste Elementfamilien gekoppelt werden, die sich nicht nur in Größe oder Ansatzordnung unterscheiden. Da der Funktionsraum nicht durch Zwangsbedingungen eingeschränkt werden muss, müssen auch keine Kompromisse hinsichtlich der Genauigkeit eingegangen werden. Für hochfrequente, transiente Berechnungen werden in diesem Projekt außerdem noch geeignete Methoden zur Diagonalisierung der Massenmatrix erarbeitet. Die entstandene Elementfamilie bildet die Basis für dynamische Netzverfeinerungen. Das besondere Merkmal dieses Ansatzes ist die gezielte Kombination von Verfeinerungs- und Vergröberungsschritten, die in jedem Zeitschritt der Simulation ausgeführt werden. Damit können optimale Konvergenzraten unter möglichst geringem numerischen Aufwand erzielt werden. Um die Effizienz der entwickelten Technik weiter zu steigern, werden die Algorithmen für Hochleistungsrechner aufbereitet. Die herausragenden Eigenschaften der vorgeschlagenen Methodik werden an ausgewählten Beispielen der Wellenausbreitung verdeutlicht. Dazu werden die kontinuierliche Strukturüberwachung mittels geführter Wellen in mikrostrukturierten Materialien und die Analyse seismischer Aktivitäten genutzt.
Design and evaluation of a novel dynamic ankle-foot orthosis using silicone/SMA materials
Laufzeit: 01.10.2022 bis 30.09.2025
Ankle-Foot Orthoses (AFOs) are those devices used for rehabilitation of a pathological gait, which is caused for instance by a stroke. This research aims to design, model, simulate, manufacture, and test a novel AFO, which is designed to ensure ease of use, freedom of movement, and high performance for high-level activities at relatively low costs. Research problems are inherent in the increasing demand for AFOs based on polymers, which have relatively low biomechanical properties and may cause skin sweating and irritation in the long term. Moreover, there are problems related to the high costs of recent AFOs made of advanced composites or carbon fiber, the market needs (orthopedic workers) and users alike, and the necessity of a novel AFO that meets the demands and helps to produce orthoses for fitting each patient. Therefore, orthotists could save time and obtain a more convenient AFO prototype, which helps them in patients' treatment.
This study includes, from an applied point of view, the design, modeling, and simulation of a novel ankle-foot orthosis based on silicone, shape memory alloy (SMA), and elastic bands. This, in turn, ensures freedom of movement and high performance for high-level activities. It also includes, in practical terms, the manufacturing of the ankle-foot orthosis, based on the aforementioned design and materials, and conducting appropriate mechanical and biomechanical tests. This study includes also a literature review and description of the materials, methods, and equipment used in the design, modeling, simulation, manufacturing, and testing of a novel dynamic ankle-foot orthosis.
Dynamics of Curved Laminated Glass Panels Under Impact Loading
Laufzeit: 31.12.2023 bis 30.09.2025
The aim of the work is to analyze dynamic stress and deformation states of both flat and curved laminated glass composites under impact loading. The work considers modeling of a rigid ball drop on on a panel. Computations using the finite element method (FEM) and the peridynamics theory are performed to predict crack patterns in glass layers. The influence of the soft polymeric interlayer on the strength of the glass laminate will be analyzed.
Autoregressive neural networks for predicting the behavior of viscoelastic materials
Laufzeit: 01.09.2022 bis 31.08.2025
Neural networks are already used extensively in the field of data analysis. Common material models consist of physically based equations to describe the real behavior as good as possible. Measurements are used to adjust the material parameters, but the accuracy of the model depends on the complexity of the constitutive equations. Neural networks offer the possibility to describe a material with the same test data without the necessity to derive complex and physically based material laws.
Considering a uniaxial stress-strain curve of a hyperelastic material, a classical neural network can be easily set up to describe this behavior. During training, the network finds a good fitting function that depends mainly on the number of weights and biases and the amount of training data. These overall parameters are not physically motivated, as they only connect the stress values to the strain values via multiplication and the sigmoid transfer functions in the range of the trainings set. This is the reason why classical neural networks have a very poor extrapolation performance.
In contrast, autoregressive neural networks can train a time series, such as the stress curve with a constant strain rate, using previous stress values to calculate the next one. Instead of training a stress-strain function, these networks attempt to find a recursive formulation between stress values. With external inputs, other variables can also be used in the recursive formulation, such as the strain rate. If the training data contains different strain rates, the network can take them into account. In addition, other variables are possible, for example, different temperatures.
Due to the recursive or regressive functionality, the network can calculate stress-strain curves, even beyond the range of the training data. With a sufficiently large training data set, it is thus possible to describe more complex material behavior better than with classical material models.
In this project the properties of viscoelastic materials shall be estimated with an autoregressive neural network. Calculating a stress-strain curve with different strain rates and training the networks can be done in a few minutes. Prediction with different strain rates and stress values outside the range of the training data works very well with only a small error and much less computation time. In addition to optimizing the network architecture, the possibility of other external inputs such as temperature or training with a real measurement data set will also be investigated.
Erweiterung fiktiver Gebietsmethoden für vibroakustische Fragestellungen - Analyse heterogener Dämmmaterialien
Laufzeit: 01.08.2022 bis 31.07.2025
Die Vorhersage des akustischen Verhaltens von Systemen, die Materialien mit komplexer Mikrostruktur beinhalten, ist aus mehreren Gründen eine große Herausforderung. Zum einen ist es sehr aufwendig, hochauflösende numerische Modelle mit Hilfe von geometriekonformen Diskretisierungen aufzubauen und zum anderen müssen alle physikalisch relevanten Wechselwirkungen der Struktur sowohl mit dem umgebenden als auch mit dem eingeschlossenen Fluid berücksichtigt werden. Die geometriekonforme Diskretisierung von heterogenen Materialien mit komplexer Mikrostruktur führt in der Regel zu einer sehr hohen Anzahl von finiten Elementen und somit zu nicht vertretbaren Rechenzeiten. Als zielführende Alternative haben sich in den letzten Jahren fiktive Gebietsmethoden, wie die Finite Cell Method (FCM), herauskristallisiert. Zur Erfassung der akustischen bzw. vibroakustischen Eigenschaften muss die FCM für das neue Anwendungsgebiet in einigen Aspekten erweitert werden. Zunächst müssen die akustische Wellengleichung für Berechnungen im Zeitbereich und die Helmholtz-Gleichung für Analysen im Frequenzbereich mit Hilfe von fiktiven Gebietsmethoden diskretisiert werden. Weiterhin müssen geeignete Kopplungsstrategien zwischen dem Struktur- und Fluidgebiet entwickelt werden. Die Teilfelder können dabei sowohl schwach (rückwirkungsfrei) als auch stark (rückwirkungsbehaftet) gekoppelt werden. Der Vorteil von fiktiven Gebietsmethoden ist neben der hochgenauen Auflösung der Geometrie (trotz nicht konformer Diskretisierung) die Möglichkeit der Überlagerung von Struktur- und Fluidelementen. Damit kann eine effektive Strategie zur vibroakustischen Kopplung heterogener Materialien entwickelt werden. Der numerische Aufwand dieser komplexen Simulationen ist auch unter Nutzung fiktiver Gebietsmethoden immer noch sehr hoch. Daher ist es ein weiteres Ziel, neben den mikrostrukturell aufgelösten Modellen auch vereinfachte Modelle auf der Basis von Verfahren zur numerischen Homogenisierung abzuleiten. Trotz der starken Abstraktion der Wirklichkeit wird erwartet, dass für verschiedene Anwendungen brauchbare Ergebnisse erzielt werden können. Der letzte Schwerpunkt des Projektes besteht in der experimentellen Validierung der entwickelten numerischen Methoden. Dazu werden verschiedene Versuchsstände genutzt. Für die Umsetzung der vibroakustischen Kopplung ist das Schwingungsverhalten der Struktur entscheidend. Dieses kann mit Hilfe eines 3D Laser-Scanning-Vibrometers untersucht werden. Zusätzlich werden die frequenzabhängigen akustischen Parameter unter Nutzung verschiedener einfacher Messaufbauten, wie bspw. einem Kundtschen Rohr, gemessen und jeweils mit den simulativ ermittelten Ergebnissen verglichen. Weiterhin wird in einem Freifeldraum die Schallabstrahlung mit Hilfe von Mikrofon-Arrays und Fernfeldmikrofonen vermessen. Auf der Basis dieser Daten kann die Leistungsfähigkeit der implementierten Modelle nachgewiesen werden. Abschließend werden Richtlinien für deren Nutzung abgeleitet.
Strategien zur dynamischen Adaption der Diskretisierung basierend auf höherwertigen Übergangselementen für die Analyse von Wellenausbreitungsvorgängen mittels Hochleistungsrechnern
Laufzeit: 01.08.2022 bis 31.07.2025
Methoden der adaptiven Netzverfeinerung (AMR) sind in vielen industriellen und auch wissenschaftlichen Anwendungen unbedingt erforderlich, um den numerischen Aufwand zu reduzieren und dadurch komplexe Problemstellungen überhaupt erst handhabbar zu machen. Betrachtet man jedoch die gegenwärtige Literatur zum Thema AMR, kristallisieren sich einige Unzulänglichkeiten heraus, die noch gelöst werden müssen. Um eine lokale Netzverfeinerung zu erreichen, müssen entweder hybride Netze bestehend aus Simplex- und Tensor-Produkt-Elementen oder Zwangsbedingungen genutzt werden. Beide Ansätze führen jedoch unweigerlich zu lokalen Genauigkeitsverlusten. Darüber hinaus werden in industriellen Anwendungen oft lineare Ansatzfunktionen verwendet, weshalb nur eine algebraische Konvergenz erzielt werden kann. Im wissenschaftlichen Umfeld gibt es selbstverständlich auch Ansätze für eine vollständige hp-Adaptivität. Diese Verfahren sind aber aufgrund ihrer Komplexität in der Implementierung auf Netze mit einem hängenden Knoten pro Elementkante/-fläche ausgelegt und weisen Schwächen in der Anwendung auf hoch dynamische Prozesse (explizite Zeitintegration) auf, da diagonale Massenmatrizen nicht verfügbar sind. Anzumerken ist, dass im Vergleich zu einfachen h-Verfeinerungen aber exponentielle Konvergenzraten erreicht werden können. Die genannten Probleme können durch höherwertige Übergangselemente, die auf der Basis der sogenannten gemischten (transfiniten) Interpolation hergeleitet werden, leicht beseitigt werden. Die Elementformulierung beruht auf Vierecks- bzw. Hexaederelementen im Referenzgebiet und kann beliebige Diskretisierungen miteinander koppeln. Im Prinzip können verschiedenste Elementfamilien gekoppelt werden, die sich nicht nur in Größe oder Ansatzordnung unterscheiden. Da der Funktionsraum nicht durch Zwangsbedingungen eingeschränkt werden muss, müssen auch keine Kompromisse hinsichtlich der Genauigkeit eingegangen werden. Für hochfrequente, transiente Berechnungen werden in diesem Projekt außerdem noch geeignete Methoden zur Diagonalisierung der Massenmatrix erarbeitet. Die entstandene Elementfamilie bildet die Basis für dynamische Netzverfeinerungen. Das besondere Merkmal dieses Ansatzes ist die gezielte Kombination von Verfeinerungs- und Vergröberungsschritten, die in jedem Zeitschritt der Simulation ausgeführt werden. Damit können optimale Konvergenzraten unter möglichst geringem numerischen Aufwand erzielt werden. Um die Effizienz der entwickelten Technik weiter zu steigern, werden die Algorithmen für Hochleistungsrechner aufbereitet. Die herausragenden Eigenschaften der vorgeschlagenen Methodik werden an ausgewählten Beispielen der Wellenausbreitung verdeutlicht. Dazu werden die kontinuierliche Strukturüberwachung mittels geführter Wellen in mikrostrukturierten Materialien und die Analyse seismischer Aktivitäten genutzt.
Eindringsimulation zur Ermittlung der Knochenbeanspruchung während Gelenkoperationen
Laufzeit: 01.01.2022 bis 30.06.2025
Moderne, schaftlose Schulterprothesen (Abbildung a) werden eingesetzt, um einen größeren Anteil der ursprünglichen Knochensubstanz zu erhalten und potenzielle Risiken konventioneller Schaftprothesen zu verringern (Herbster 2020). Sie sind so geformt, dass neu gebildetes Knochenmaterial durch sie hindurchwachsen kann, was eine gute Kraftübertragung zwischen Implanat und Knochen ermöglicht. Wie genau eine optimale Fixierung, also eine optimale Osseointegration erreicht bzw. stimuliert werden kann, ist jedoch nicht vollständig geklärt (Berth 2016).
Vor diesem Hintergrund besteht das Ziel dieses Projekts darin, die mechanische Beanspruchung im Oberarmknochen während der Operation unter Nutzung der Finite-Elemente-Methode zu simulieren. Mithilfe der Ergebnisse wird untersucht, ob eine oder mehrere mechanische Beanspruchungsgrößen, z.B. Spannungen oder elastische/plastische Dehnungen mit Messdaten der Zellaktivitiät im Knochen, die in Form vom SPECT/CT-Daten vorliegen, korrelliert werden können.
Der entwickelte Workflow sieht folgende Einzelschritte vor:
- Ableitung der relevanten Knochengeometrien sowie der genauen Lage des Implantats aus SPECT/CT-Daten (Abbildung b).
- Transformation der Geometrien sowie der Messdaten der Zellaktivität in eine Referenzlage für die Simulation.
- Ableitung eines FEM-Modells aus den CT-Daten, die in Form einer Punktewolke im dreidimensionalen Raum sowie der dazugehörigen Intensität aus der CT-Messung vorliegen (Abbildung c).
- Durchführung der Simulation mit geeigneten Materialmodellen und -daten (Abbildung d).
- Auswertung der Simulationsgergebnisse und Korrelation mit Messdaten der Zellaktivität in der Nähe des Implantats.
Modell zur Beschreibung des mechanischen Verhaltens von Stählen unter hohen Temperaturen mit zyklischer Belastung
Laufzeit: 01.10.2019 bis 30.06.2025
Hochtemperaturbauteile, wie sie z.B. in Kraftwerken zu finden sind, müssen sowohl thermischen als auch mechanischen Beanspruchungen standhalten, wobei sich die Kombination dieser Prozesse negativ auf die Lebensdauer der Komponenten auswirken kann. Durch das Hoch- und Runterfahren der Anlagen treten außerdem zyklische Beanspruchungen auf, deren Simulation zu numerisch komplexen Zeitintegrationen mit kleinen Schrittweiten führt. Aus diesem Grund wurde das Materialverhalten bisher mit monotoner Belastung oder nur für wenige Zyklen simuliert, obwohl diese massgeblich für Ermüdungserscheinungen sein können. Der Mehr-Zeitskalen-Ansatz wird zur Modellierung von Plastizität, Schädigung und Ermüdung eingesetzt, mit der Grundidee, durch Entkopplung der Gleichungen separate Gleichungssysteme für die verschiedenen Zeitskalen zu schaffen und diese getrennt voneinander zu lösen. Dabei wird zwischen einer Zeitskala für die quasi-statische ("langsame") und einer für die hochfrequente ("schnelle", zyklische) Belastung unterschieden. Die Anwendung dessen in Kombination mit einem kalibrierten Materialmodell reduziert die Rechenzeit erheblich und bietet somit nicht nur die Möglichkeit, eine hohe Anzahl an Zyklen zu betrachten, sondern resultiert auch in einergenaueren Bestimmung und Optimierung der Lebensdauer.
Verbesserung der numerischen Effizienz von Rotordynamiksimulationen durch Anwendung der Scaled Boundary Finite Element Method zur Berechnung der hydrodynamischen Lagerung
Laufzeit: 01.07.2022 bis 30.06.2025
Die rotordynamischen Eigenschaften gleitgelagerter Systeme werden entscheidend durch die nichtlinearen Lagerkräfte beeinflusst. Bei schnelldrehenden, leicht belasteten Rotoren kommt es dadurch zu subsynchronen selbsterregten Schwingungen mit häufig großen Amplituden, welche die Lebensdauer der Komponenten reduzieren, kritische Schallemissionen verursachen und den Wirkungsgrad der Maschine beeinträchtigen können. Zur Prädiktion des komplexen Verhaltens, ist eine präzise Simulation erforderlich, welche die nichtlinearen Wechselwirkungen zwischen den Lagerkräften und Wellenschwingungen abbildet. Dazu wird die Bewegungsgleichung der elastischen Welle innerhalb eines Zeitschrittverfahrens mit der Reynoldsgleichung, welche den hydrodynamischen Druckaufbau im Gleitlager beschreibt, gekoppelt. Die Reynoldsgleichung muss daher in jedem Zeitschritt gelöst werden, was mittels numerischer Methoden, analytischer Approximationen oder auf Basis vorab berechneter Kennfelder geschieht. Numerische Berechnungsmodelle bieten eine hohe Genauigkeit, bringen jedoch einen erheblichen und oftmals inakzeptablen Rechenaufwand mit sich. Die deutlich schnelleren, analytischen Lösungen sind wiederum nur im Zusammenhang mit erheblichen Vereinfachungen möglich, welche zu ungenauen Simulationsergebnissen führen. Der Kennfeldansatz stellt gewissermaßen einen Kompromiss dar, wobei die Modellierungstiefe beschränkt bleibt.
Ein vielversprechender Ansatz zur Entwicklung einer numerisch effizienten Lösung ohne die erheblichen Einschränkungen analytischer oder auf Kennfeldern basierender Methoden ist die semi-analytische Scaled Boundary Finite Element Method (SBFEM). Die Grundlagen zur Lösung der Reynoldsgleichung mit der SBFEM wurden im Rahmen verschiedener Vorarbeiten hergeleitet und sollen nun weiterentwickelt werden, um den numerischen Aufwand weiter zu reduzieren und die Modellierungstiefe zu verbessern. Zur Reduzierung des numerischen Aufwands sollen höherwertige Ansatzfunktionen mit einem Algorithmus zur automatischen, adaptiven Netzverfeinerung und -vergröberung kombiniert und unterschiedliche Transformationen der Reynoldsgleichung untersucht werden, um die Lösung zu glätten. Eine weitere Strategie besteht darin, dem Zeitschrittverfahren eine Vorlaufrechnung voranzustellen, in der die in der SBFEM zu lösenden Eigenwertprobleme in einer Reihe entwickelt werden, was eine numerisch effiziente Approximation innerhalb der Zeitintegration ermöglicht. Um außerdem die Modellierungstiefe bzw. die Genauigkeit der SBFEM-Lösung zu verbessern, sind Strategien zur Einbeziehung masseerhaltender Kavitationsmodelle und zur Berücksichtigung der Wellenschiefstellung zu untersuchen. Im letzten Schritt soll die entwickelte Methodik verifizieren und hinsichtlich ihrer Effizienz analysiert werden. Zur Sicherstellung eines realistischen Kontexts erfolgt dies im Rahmen einer Rotordynamik- bzw. MKS-Formulierung, wodurch auch komplexe technische Gesamtsysteme simuliert werden können.
Erweiterung fiktiver Gebietsmethoden für vibroakustische Fragestellungen – Analyse heterogener Dämmmaterialien
Laufzeit: 01.04.2023 bis 31.03.2025
Das Projekt widmet sich der Entwicklung einer effizienten Berechnungsmethodik zur Lösung dreidimensionaler vibroakustischer Problemstellungen unter Einsatz poröser Dämmmaterialien. Hierbei ist es das Ziel, die Mikrostruktur des Dämmmaterials aufzulösen, um aktuelle Grenzen der oft eingesetzten Biot’schen Theorie zu überwinden, die insbesondere für die Modellierung geschlossenporiger Schäume ungeeignet scheint. Um die angestrebte, äußerst aufwendige geometrieaufgelöste Modellierung zu ermöglichen, sollen fiktive Gebietsmethoden mit höherwertigen Ansatzfunktionen eingesetzt werden. Diese lassen sich zum einen sehr vorteilhaft auf Voxel-Daten anwenden und zum anderen ist eine hohe Effizienz für Wellenausbreitungsprobleme zu erwarten.
Analyse von Verbindungselementen unter Berücksichtigung thermischer Lasten
Laufzeit: 01.04.2024 bis 31.12.2024
Für die Montage von Maschinen werden häufig Schrauben verwendet, welche ein zerstörungsfreies Demontieren ermöglichen. Ein wichtiger Parameter bei Schraubverbindungen ist die Vorspannkraft und das Drehmoment, welche benötigt werden, um diese Kraft im Verbindungselement einzustellen. Die Berechnung einer Schraubenverbindung kann in der Regel analytisch erfolgen, wenn die Steifigkeit der zu verschraubenden Bauteile bekannt ist, wobei durch einen langen Schraubenschaft auch beim Setzen oder bei Bewegungen der Bauteile die Vorspannkraft aufrechterhalten werden kann. Dieses Prinzip wird in der Praxis mit Dehnschrauben umgesetzt.
Problematisch wird es, wenn zusätzlich thermische Dehnungen durch unterschiedliche Temperaturen oder auch durch unterschiedliche Wärmeausdehnungskoeffizienten in den Werkstoffen der Verbindung vorliegen, was zu einem rapiden Abfall der Vorspannung führen kann. Infolge der thermomechanischen Kopplung und der üblicherweise unbestimmten Lagerung, müssen an dieser Stelle numerische Simulationen Verwendung finden .
Im Projekt wird eine Maschine untersucht, bei der Teile der Verschraubung sehr warm werden. Am realen Bauteil werden die Längsdehnung und damit die Längskraft unter realen Temperaturen und weiteren Lasten durch Betriebskräfte mittels Dehnungsmesstreifen erfasst.
Zur detaillierten Analyse wird ein thermomechanischen FE-Modell der gesamten Maschine mit allen Schraubelementen (statisch unbestimmte Lagerung) erstellt, um den Einfluss der Änderung der Vorspannkraft aufgrund der Temperatur zu berechnen.
Neben der Vorspannkraft lässt sich im FE-Modell auch die Spannungsverteilung im restlichen Teil der Maschine bestimmen. Relevant sind diese Analysen, da eine im warmen Zustand vorgespannte Schraube sich beim Abkühlen zusammenzieht und die Vorspannkraft dann ansteigt. So können schnell die zulässigen Spannungen in der Schraube aber auch in den Bauteilen überschritten werden.
Bestimmung der mechanischen Eigenschaften des Sakroiliakalgelenks eines Hundes durch bildgebende Messverfahren und Modelupdate in einem Mehrkörpermodell
Laufzeit: 01.01.2023 bis 31.12.2024
Das Sakroiliakalgelenk (SIG) ist die gelenkige Verbindung zwischen dem Kreuzbein und dem Darmbein, wobei sich das Gelenk durch einen zusammengesetzten Aufbau auszeichnet und infolge verschiedener angreifender Bänder straff und nur wenig bewegliches ist. Bei vielen Hunden kommt es im Alter zu einer weiteren Versteifung dieses Gelenks, wodurch Schmerzen bei der Bewegung entstehen. Für eine Therapie sind bislang zu wenig Informationen über den Grad der Versteifung und den eigentlichen Bewegungsumfang bekannt.
Folglich stellt eine Erfassung des Bewegungsumfangs von verschiedenen Individuen (gesunden und erkrankten) einen notwendigen Schritt zum besseren Verständnisses des sogenannten SIG-Syndroms dar.
Die grundlegende Untersuchung der mechanischen Eigenschaften des SIG erfolgt post mortem. Zur Bestimmung der Beweglichkeit des Gelenks wird das Kreuzbein fixiert und mittels Aktuatoren eine Bewegung am Darmbein erzwungen. Die dafür notwendigen Kräfte und die daraus folgende räumliche Bewegung von Darm- und Kreuzbein werden messtechnisch erfasst. Aus dem Verhältnis der so ermittelten kinematischen und dynamischen Größen lassen sich prinzipiell die translatorischen und rotatorischen Steifigkeiten des SIG bestimmen.
Da die Aufprägung von gerichteten Lasten am Darmbein zur gezielten Beanspruchung der einzelnen Bänder des Gelenks nicht möglich ist, werden die elastischen Parameter der Bänder mittels heuristischer Verfahren aus den zuvor ermittelten Messdaten bestimmt. Die Validierung dieser Methode erfolgt simulativ mit einem Mehrkörpermodell, welches das Darmbein, die Bänder und die Aktuatoren des Prüfstandes mit deren räumlicher Orientierung beinhaltet.
Gekoppelte Peridynamik-Finite-Elemente-Simulationen zur Schädigungsanalyse von Faserverbundstrukturen
Laufzeit: 01.05.2021 bis 31.12.2024
Für den Entwurf, die Bewertung und die Zulassung von sicherheitsrelevanten Leichtbaustrukturen ist die Vorhersage des Schädigungsverhaltens und der Restfestigkeit im Rahmen einer Schadens-toleranzbewertung ausschlaggebend. Für Faserverbundwerkstoffe (FVW) fehlen bisher hinreichend genaue und robuste Methoden zur Bewertung einer progressiven Schädigung. Die wesentliche Herausforderung für eine Analyse von FVW-Strukturen im Vergleich zu metallischen Werkstoffen besteht in der Heterogenität der FVW, die zu komplexen Versagensmechanismen führt. Eine Simulationsmethodik zur Festigkeitsbewertung muß daher sowohl die Schadensinitiierung als auch den Schadensfortschritt einschließlich aller wirkenden Mechanismen und deren Interaktion abbilden können.
Im Rahmen des DFG-Projektes wird das Ziel verfolgt, eine verbesserte Methodik zur Schadensanalyse für FVW zu entwickeln. Dafür wird ein neuer adaptiver Lösungsansatz vorgeschlagen, der aus einer Kopplung der Peridynamik (PD) für potentiell geschädigte Modellbereiche mit der FEM für die ungeschädigten Bereiche besteht. Das Ziel des Projektes ist es, die Vorhersagegenauigkeit des Lasttragverhaltens zu erhöhen und dadurch robustere, sichere und ressourcenschonendere Strukturen entwickeln zu können.
Die PD ist eine vielversprechende nicht-lokale Methode zur Beschreibung der Schädigung und des dynamischen Rißwachstum vor allem in spröden Materialien. Allerdings ist der Rechaufwand extrem hoch, um eine hinreichend genaue Beschreibung des Rißverhaltens zu erreichen. Um den Rechenaufwand zu reduzieren, wird die Peridynamik nur in den Teilgebieten einer Struktur eingesetzt, in denen potentiell Risse auftreten können. Die übrigen Strukturgebiete werden mit Hilfe der klassischen Finite Element Methode (FEM) modelliert. Im Projekt werden geeignete Methoden der Kopplung der PD mit der FEM entwickelt, getestet und bewertet und für die Rißausbreitung eingesetzt. Erste gute Ergebnisse wurden mit der Arlequin Methode und der alternierenden Schwarz-Method erzielt. Die dazu im Projekt entwickelte Software wird gemäß des DFG Ziels zur "Nachhaltigkeit von Forschungssoftware" im Rahmen des Förderprogramms "e-ResearchTechnologien" frei zugänglich gemacht werden (Open Source Software), um eine Weiterverwendung durch andere Forscher zu ermöglichen.
Schwingungsuntersuchung einer Kälteanlage
Laufzeit: 01.04.2024 bis 31.12.2024
In Kälteanlagen werden gasförmige Medien durch einen Kompressor verdichtet und dadurch verflüssigt. Anschließend wird das Kältemittel in Rohrleitungen zu anderen Komponenten wie Wärmetauschern oder Trocknern geführt. Durch die Drehbewegung des Kompressors entsteht eine Schwingungsanregung des Rohrsystems, wobei in Abhängigkeit der Drehzahl und des Betriebspunkts auch eine Resonanzanregung möglich ist, welche speziell bei den oftmals schwach gedämpften Rohrleitungen zu großen Verformungen und einem Systemversagen führen kann.
In dem Projekt werden die Schwingungen eines Rohrleitungssystems experimentell ermittelt und ein 3D FE-Modell des Ist-Zustands erstellt. Nach einer Validierung können konstruktive Änderung in der Befestigung und Lagerung der Rohre auf ihren Einfluss bzgl. der wirkenden Spannungen im Material untersucht werden. Gerade bei komplexen Kälteanlagen sind die Rohrleitungen sehr lang und verwinkelt, weshalb eine analytische Betrachtung nicht mehr möglich ist.
Mit diesem Entwicklungsschritt lassen sich kritische Rohrschwingungen bestimmen und im Berechnungsmodell geeignete konstruktive Änderungen umsetzen. Die virtuelle Produktentwicklung erspart in der Praxis den Bau von Prototypen und reduziert den finalen Versuch auf wenige Vorzugsvarianten, die aus dem Berechnungsmodell abgeleitet werden können.