Institut für Werkstoff- und Fügetechnik

Aktuelle Projekte

Identifikation der Mikrostruktur-Eigenschaftsbeziehungen dispersionsverstärkter Hochleistungswerkstoffe
Laufzeit: 01.05.2024 bis 30.04.2027

Ziel des Vorhabens ist die Entwicklung und Qualifizierung von dispersoidverstärkten hochtemperaturfesten Legierungen für den Einsatz als potenzielle Strukturwerkstoffe in der Luft- und Raumfahrt. Effiziensteigerung durch erhöhte Betriebstemperaturen sowie verringertes Gewicht führen zu einem verbesserten Wirkungsgrad von Turbinen .

Projekt im Forschungsportal ansehen

AddBluff4NH3/H2: Additiv gefertigter Bluff-Body-Brenner, charakterisiert durch detaillierte Simulationen und Experimente für die brennstoffflexible, stabile und sichere Verbrennung von NH3/H2-Gemischen
Laufzeit: 01.01.2024 bis 31.12.2026

Dieses Projekt ist ein Verbundprojekt im Rahmen des DFG SPP 2419 "Ein Beitrag zur Realisierung der Energiewende: Optimierung thermochemischer Energiewandlungsprozesse zur flexiblen Nutzung wasserstoffbasierter erneuerbarer Brennstoffe durch additive Fertigungsverfahren".
In diesem Projekt wird ein additiv gefertigter Bluff-Body-Brenner für die brennstoffflexible, stabile und sichere Verbrennung von NH3/H2-Gemischen betrachtet. Zur Untersuchung der Verbrennungseigenschaften und der Schadstoffemissionen werden akkurate numerische Simulationen und detaillierte experimentelle durchgeführt. Die Brennerkonstruktion wird dann optimiert (in Bezug auf Form, Größe und Position des Flammenhalters), um ein effizientes Verbrennungsverhalten zu erreichen. Es werden offene und geschlossene Brennergeometrien betrachtet. Die Seite des Flammenhalters in Kontakt mit der Flamme und andere Hochtemperaturteile werden durch additive Fertigung unter Verwendung von zunächst Ni-Basis-Legierungen und später ultrahochtemperaturbeständigen Refraktärmetall-Legierungen hergestellt, um schnelle Geometrievariationen zu ermöglichen. Die Dynamik der turbulenten Flamme, die Wechselwirkungen zwischen Flamme und Wand, die Grenze der stabilen Verbrennung, der Flammenrückschlag und die Wärmefreisetzung werden untersucht. Schließlich wird ein optimales Bluff-Body-Brennerdesign für eine stabile, sichere, brennstoffflexible und saubere Verbrennung von NH3/H2 als Mischbrennstoff entwickelt.

Projekt im Forschungsportal ansehen

FlexiDS 2.0: Gerichtetes Wachstumsverhalten von neuartigen eutektischen V-Si-B-Legierungen - Charakterisierung und Eigenschaften für Hochtemperaturanwendungen
Laufzeit: 01.12.2023 bis 30.11.2026

V-Si-B-Legierungen stehen seit einigen Jahren im Fokus der wissenschaftlichen Materialentwicklung. Diese Legierungen stellen, bevorzugt durch ihre hervorragenden spezifischen mechanischen Eigenschaften, eine vielversprechende Alternative zu Ni- und Mo-Basiswerkstoffen im Bereich der Hochtemperaturlegierungen dar. So weist das V-Si-B Legierungssysteme in Hinblick auf seine Mikrostruktur einige interessante Gemeinsamkeiten mit dem gut untersuchten Mo-Si-B-Schwestersystem auf. Beide Legierungssysteme bilden im metallreichen Bereich (z.B. Vanadium) ein ternäres Eutektikum aus einem Mischkristall, V(Mk), und den zwei intermetallischen Phasen V3Si und V5SiB2. Über gerichtete Erstarrung, lässt sich das Eutektikum gezielt entlang der Erstarrungsrichtung „züchten“, was eine starke Richtungsabhängigkeit der resultierenden mechanischen Eigenschaften (Festigkeit, Kriechbeständigkeit) zur Folge hat. Diese ließen sich, ähnlich wie bei Ni-Basis Superlegierungen, gezielt für einen anwendungsrelevanten Lastfall einstellen. Das beantragte Vorhaben untersucht die Mikrostrukturausbildung und die dadurch resultierenden Eigenschaften (richtungsabhängige Festigkeiten und Kriecheigenschaften) gerichtet erstarrten, neuartiger eutektischer V-Si-B-Legierungen. Dazu wird das Zonenschmelzverfahren sowohl ex-situ als auch der direkte Übergang von der flüssigen in die feste Phase im Moment der gerichteten Erstarrung in-situ untersucht und analysiert.

Projekt im Forschungsportal ansehen

Werkstoffdesign mittels Legieren und Wärmebehandlung
Laufzeit: 01.07.2023 bis 30.06.2026

Metallische Werkstoffe für Anwendungen als Strukturwerkstoffe, u.a. in korrosiver Umgebung bei unterschiedlichen Temperaturen, müssen ein breites Eigenschaftsspektrum aufweisen. Durch die Zugabe von Legierungselementen können die Eigenschaften in einem breiten Bereich beeinflusst werden. So kann z.B. die Festigkeit von Molybdänwerkstoffen selbst durch geringfügige Mengen an Silizium deutlich gesteigert werden. Auch weitere Eigenschaften, wie der tribologische Abrieb, die Oxidations- bzw. Korrosionsrate und die zyklische Festigkeit, sind stark von der Auswahl, der Konzentration und der Kombination von Legierungselementen abhängig. Zusätzlich spielt der Wärmebehandlungszustand der Legierungen für die anwendungsgerechte Einstellung des Eigenschaftsspektrums eine große Rolle. Für Werkstoffe im Medizinbereich, bspw. Implantatwerkstoffe, spielen außerdem Eigenschaften unter variierenden Beanspruchungsbedingungen (zyklische Belastung) eine entscheidende Rolle. Im Rahmen dieses Projektes sollen Werkstoffe so modifiziert werden, dass Härte und Verschleißbeständigkeit erhöht und die statische bzw. zyklische Beanspruchbarkeit verbessert wird, ohne die Oxidations- und Korrosionsbeständigkeit zu vermindern. Dabei werden die Mikrostruktur-Eigenschaftsbeziehungen gezielt beeinflusst, um optimale Voraussetzungen für die spätere Anwendung zu schaffen.

Projekt im Forschungsportal ansehen

Entwicklung und Charakterisierung von eutektischen V-Si-B-Legierungen mit verbesserten spezifischen mechanischen Eigenschaften: Roll der neuen V8SiB4-Phase
Laufzeit: 01.04.2024 bis 31.03.2026

Vanadium-Silizid-Werkstoffe stellen eine potentielle Alternative für aktuell eingesetzte Hochtemperaturwerkstoffe dar, insbesondere aufgrund ihrer hervorragenden spezifischen mechanischen Eigenschaften. So bestehen beispielsweise V-Si-B-Legierungen aus dem Vanadium-reichen Bereich des Dreistoffsystems aus einem duktilen Vanadium-Mischkristall (V-Mk) und den beiden intermetallischen Phasen V3Si und V5SiB2. Dieses bislang nur wenig erforschte Legierungssystem birgt jedoch in Hinblick auf die Mikrostruktur einige erstaunliche Gemeinsamkeiten zum gut untersuchten Nachbarsystem Mo-Si-B. So konnten in ersten Vorversuchen an V-Si-B-Legierungen deutlich bessere spezifische Druckfestigkeiten im Temperaturbereich von 600 °C bis 900 °C gegenüber Ni-Basislegierungen erzielt werden. Jedoch ist der Mechanismus der Phasenentstehung sowie die Korrelation der Mikrostruktur-Eigenschaftsbeziehungen noch vollkommen unerforscht. Das primäre Ziel dieses Vorhabens ist die Entwicklung neuartiger V-Si-B-Legierungen für Hochtemperaturanwendungen. Hierbei wird die Entwicklung ternär-eutektischer Legierungen angestrebt. In einer Reihe von V-reichen binären und ternären Versuchslegierungen wird die Phasenbildung und -stabilität von der Schmelze bis zum homogenisierten Gefüge erforscht. In der 2. Förderphase steht die Bedeutung der neu entdeckten Phase V8SiB4 im Fokus der Forschung.

Projekt im Forschungsportal ansehen

ME-MAT: Herstellungsbedingte Optimierung metallischer Hochtemperaturwerkstoffe
Laufzeit: 01.01.2024 bis 31.12.2025

Das übergeordnete Ziel des Vorhabens ME-MAT liegt im Netzwerkaufbau zwischen Kooperationspartnern aus Deutschland, Polen, Bulgarien und Ungarn.
Der wissenschaftliche Fokus liegt auf der Anpassung der Pulverfertigung für additive Herstellungsverfahren. Da der avisierte mehrphasige Werkstoff aus der Gruppe der Refraktärmetalle eine extrem hohe Schmelztemperatur besitzt und gleichzeitig unter Umgebungsbedingungen sehr reaktiv ist, ergeben sich herausfordernde Forschungsfragestellungen.

Projekt im Forschungsportal ansehen

H2SuD - Einfluss des Schweißens auf die Wasserstoffaufnahme und Degradation im Betrieb befindlicher H2-Ferngasleitungen
Laufzeit: 01.11.2022 bis 31.10.2025

Insbesondere beim Schweißen stellt Wasserstoff aufgrund seiner sehr speziellen physikalischen Eigenschaften, dem allgemein negativen Einfluss auf die Festigkeit und der Duktilität der eingesetzten Werkstoffe, eine besondere Herausforderung dar. In den angedachten Arbeitspaketen wird daher die Frage systematisch geklärt, ob und wie stark mit einer Eigenschaftsdegradation geschweißter Rohrstähle in Gasnetzen in Folge einer Wasserstoffaufnahme zu rechnen ist. Anlass des Forschungsantrages ist daher das ungeklärte Verhalten wasserstoffführender Rohrleitungen typischer niedriglegierter Stähle während kurzer Wärmezyklen in Folge von Schweißarbeiten, insbesondere im Reparaturfall. Der aktuelle Stand der Technik für das Schweißen an in Betrieb befindlichen Gasleitungen (explizit jedoch nicht für Wasserstoff) wurde durch jahrzehntelange Untersuchungs- und Forschungsarbeiten entwickelt und im DVGW-Regelwerk festgeschrieben (vgl. DVGW-Arbeitsblätter GW 350, G 466-1 und G 452-1). Die geplanten Forschungsarbeiten dienen der systematischen Erweiterung des Wissensstandes, um den Einfluss des Wasserstoffs auf das Schweißen an in Betrieb befindlichen Gashochdruckleitungen zu berücksichtigen und die Erkenntnisse in das DVGW-Regelwerk zu integrieren.

Projekt im Forschungsportal ansehen

Produktivitätssteigerung beim additiven Lichtbogenschweißen dünnwandiger Strukturen aus hochlegierten korrosionsbeständigen Werkstoffen
Laufzeit: 01.05.2023 bis 31.10.2025

Ziel des Forschungsvorhabens ist die Entwicklung einer geeigneten aktiven Kühlstrategie zum additiven MSG-CMT-Schweißen mit hochlegierten korrosionsbeständigen Massivdrahtelektroden. Diese soll sowohl in den kritischen Temperaturbereichen wirken, in denen relevante Gitterumwandlungen und Sekundärphasenausscheidungen auftreten, als auch die hohen technologischen Ansprüche des additiven Fertigens, d. h. Eignung für mehrachsige Fertigungssystemen mit beweglichem Arbeitstisch und komplexe Bauteilstrukturen, berücksichtigen. Die wirtschaftlichen Vorteile des Kühlens sind eine signifikante Reduzierung der Nebenzeiten durch eine relativ geringe Investition sowie die mögliche Erhöhung von Abschmelzleistung bzw. Aufbaurate durch Einsatz von Mehrdraht-MSG-Schweißprozessen. Die technischen Vorzüge zeigen sich in einer verbesserten Makro- und Mikrostruktur, schnelleren Abkühlraten in den kritischen Temperaturgebieten sowie höheren mechanischen Eigenschaften und Korrosionsbeständigkeiten. Aufbauend auf dem Stand der Technik sind daher die Randbedingungen und Einflussfaktoren verschiedener aktiver Kühlmethoden gegenüberzustellen, eine geeignete Kühlstrategie abzuleiten und unter Beachtung der werkstofflichen Herausforderungen des hochlegierten korrosionsbeständigen Legierungstyps (Austenit, Duplex, Ni-Basis) zu untersuchen.

Projekt im Forschungsportal ansehen

Entwicklung eutektischer Refraktärmetalllegierungen für Anwendungen unter extremen Bedingungen
Laufzeit: 01.10.2022 bis 30.09.2025

Der Schwerpunkt des Projektes ist es, ein umfassendes Verständnis von refraktärmetallbasierten RM-Si-B-Systems zu gewinnen. Dies beinhaltet die Phasenentstehung und -umwandlung während der Erstarrung, sowie die Phasenstabilität und Umwandlungen im Gleichgewichtszustand. Dabei wird gezielt nach ternären Eutektika in den metallreichen Teil der RM-Si-B-Systems geforscht. Hierzu werden die chemischen Zusammensetzungen der beteiligten Phasen mittels thermodynamischer Berechnungen identifiziert und experimentell validiert (z.B. mittels WDX- oder Mikrosondenmessungen). Als vorteilhaft werden ternäre Eutektika hinsichtlich ihrer für den Legierungsbereich niedrigsten Schmelzpunktes sowie die mit der Mikrostruktur im Zusammenhang stehenden besonderen mechanischen Eigenschaften erachtet. Des Weiteren lässt sich über die (prozessabhängigen) Abkühlbedingungen die eutektische Mikrostruktur gut kontrollieren und damit gezielt Einfluss auf die mechanischen Eigenschaften solcher Legierungen nehmen. Das kann beispielweise über gerichtete Erstarrung solcher RM-basierten eutektischen Systeme erreicht werden. Ziel ist es, RM-Si-B-Legierung zu entwickeln, welche gegenüber Ni-Basis verbesserte spezifische Festigkeitseigenschaften bei Temperaturen zwischen 600 °C und 1500 °C (mögliche Einsatzfenster eutektischer RM-Si-B-Systeme) aufweist. Dabei stehen besonders Mo- und V-basierte Legierungssystem im Fokus der wissenschaftlichen Arbeit.

Ähnlich wie bei Mo-Si-B-Werkstoffen ist eine technische Anwendung von beispielsweise Vanadium-Silizid-Legierungen mit etwa 30 bis 70% V(MK)-Phase und komplementären Silizidphasen am aussichtsreisten und wahrscheinlichsten. Ein genaues Verständnis der Mikrostruktur-Eigenschaftsbeziehungen in Kombination mit der Thermodynamik RM-reicher RM-Si-B-Systems ist daher essenziell und es wird ein möglichst ganzheitlicher Materialentwicklungsansatz verfolgt. Dieser umfasst die Legierungsauswahl und Werkstoffsynthese (Lichtbogenofen, gerichtete Erstarrung, Wärmebehandlungen), die Charakterisierung der Mikrostrukturentwicklung und mechanischer Eigenschaften (temperaturabhängige Druck- und Kriechversuche) sowie die Entwicklung wirksamer Oxidationsschatzmechanismen (über präkeramische Polymere und Packzementieren) für die RM-Si-V-Legierungssysteme.

Projekt im Forschungsportal ansehen

Refraktärmetallbasierte Legierungen mit integrierten Beschichtungen für Anwendungen in der Luft- und Raumfahrttechnik
Laufzeit: 01.06.2022 bis 31.08.2025

Der Wirkungsgrad von Gas- und Flugzeugturbinen ließe sich bereits durch eine leicht höhere Gaseintrittstemperatur beträchtlich steigern, was eine deutliche Verbesserung von Umweltbilanz und Ressourcenverwendung zur Folge hätte. Die aktuell zum Einsatz kommenden Nickel-Basis-Superlegierungen sind in diesem Zusammenhang wegen ihrer vergleichsweisen niedrigen Schmelztemperatur sehr stark limitiert, weshalb mit dieser Werkstoffklasse kaum noch Verbesserungen erzielt werden können. Als aussichtsreichste Kandidaten für den Ersatz von Nickel-Basis-Superlegierungen gelten die schon seit geraumer Zeit diskutierten refraktärmetallbasierten Mo-Si-B-Legierungen, deren Eigenschaftsspektrum sowohl bei Raumtemperatur als auch bei höheren Temperaturen am Ausgewogensten ist. Zudem konnte in früheren Untersuchungen gezeigt werden, dass ein Zulegieren von Vanadium innerhalb dieser Hochtemperaturlegierungen zu einer nicht unerheblichen Verringerung der Dichte führt, was sie für einen möglichen Einsatz in der Luft- und Raumfahrttechnik prädestinieren würde.
Die größte Herausforderung dieser Legierungen ist nach wie vor die Oxidationsbeständigkeit, die es in dieser Hinsicht zu verbessern gilt. Insbesondere der Bereich zwischen 600 °C und 800 °C ist als äußerst kritisch anzusehen, da es hier zu dem sog. "Pesting", einem katastrophalen Oxidationsversagen, kommt. Ab einer Temperatur von 1000 °C beginnt sich jedoch nach einer gewissen Zeit eine schützende Borosilikatschicht auf der Oberfläche auszubilden, die das Material vor weiterer Oxidation schützt.
Das Hauptaugenmerk dieses Projekts liegt auf der Entwicklung und Optimierung von Mo-40V-9Si-8B-Werkstoffen, welche zusätzlich mit einer Beschichtung [MoSi2/RHEA Mo-Ta-Ti- (Cr, Al)] versehen werden, um auf diese Weise den Anforderungen der Luft- und Raumfahrtindustrie hinsichtlich mechanischer Eigenschaften und Oxidationsbeständigkeit gerecht zu werden. Hierzu muss zunächst eine geeignete Legierungsstrategie sowohl für das Substrat als auch für den Schichtwerkstoff entwickelt werden. Anschließend soll eine entsprechende pulvermetallurgische Herstellungsroute über das mechanische Legieren etabliert werden. Dabei soll der Basiswerkstoff über einen entsprechenden Sintervorgang hergestellt werden, während die Oxidationsschutzschicht mittels Hochleistungskathodenzerstäubung bzw. über das Packzementieren appliziert werden soll. Im letzten Schritt sollen dann sowohl am unbeschichteten als auch am beschichteten Material diverse Untersuchungen (Mikrostrukturanalyse, mechanische Eigenschaften, Oxidationsbeständigkeit, …) durchgeführt werden, um das entwickelte Materialsystem auf seine Anwendbarkeit als Strukturwerkstoff zu überprüfen.

Projekt im Forschungsportal ansehen

Resist -Methode zur Erzeugung und Beurteilung von schweißbedingten Rissen beim Widerstandspunktschweißen (IGF 22 654 BR)
Laufzeit: 01.09.2023 bis 31.08.2025

Zur Einhaltung der gestiegenen Anforderungen im Bereich des Insassenschutzes sowie der Umsetzung von Leichtbauzielen werden vermehrt höchst- und ultrahochfeste Stähle im Automobilbau verwendet. Um diese Stähle zu einer tragenden Struktur zu fügen, dominiert im Karosseriebau das Widerstandspunktschweißen. Obwohl eine generelle Schweißeignung der eingesetzten Stähle vorliegt, kann es infolge von fertigungsbedingten Störgrößen zu einer erhöhten Anfälligkeit gegenüber Unregelmäßigkeiten beim Widerstandspunktschweißen kommen. Diese Imperfektionen treten in Form von Rissen, Poren, Lunkern und Einschlüssen am Schweißpunkt auf. Für die sichere Auslegung von Schweißverbindungen wird im Rahmen des Projektes der Einfluss von Rissen auf die Verbindungseigenschaften untersucht. Aktuell sind hier neuartige hochfeste Mehrphasenstähle der Gen III für die Kaltumformung fokussiert, welche eine hohe Anfälligkeit zu schweißbedingten Rissen aufweisen. Diese Risse sind durch die sogenannte Flüssigmetallversprödung (engl.: Liquid Metal Embrittlement - LME) bedingt, welche durch die zum Korrosionsschutz aufgetragene Zinkbeschichtung provoziert wird.
Aktuell existieren eine Reihe von unterschiedlichen Untersuchungen zur Korrelation von LME-bedingten Rissen und den mechanischen Eigenschaften der Verbindung, jedoch liegen keine normativen Aussagen über den Einfluss von Risslängen und –lagen auf die Verbindungsfestigkeit vor.
Die Innovation des Forschungsvorhabens liegt in der Entwicklung einer einfachen und industrienahen Prüfmethodik, die zur Detektion und Klassifizierung der Rissanfälligkeit von Werkstoffen und Materialdickenkombinationen dient und die Auswirkung der Risse auf die mechanischen Verbindungseigenschaften beschreibt.
Die Ziele des Projektes sind zusammengefasst:

  • die Identifikation von Prozesseinflüssen zur Erzeugung von schweißbedingten Rissen
  • die Herstellung von Proben mit unterschiedlichen schweißbedingten Rissen und deren zerstörungsfreie Rissdetektion
  • die Analyse des Einflusses von definierten Rissen auf die Verbindungsfestigkeit der Fügeverbindung
  • die Ableitung einer industrienahen Methodik zum Prüfen der Rissanfälligkeit

Projekt im Forschungsportal ansehen

Vereinfachte Prüfmethode zur Bewertung der Gefahr wasserstoffunterstützter Kaltrisse (HACC] beim Lichtbogenschweißen hochfester Stähle
Laufzeit: 01.11.2022 bis 30.04.2025

Eine Prüfung der wasserstoffunterstützten Kaltrissbildung (HACC) bei der Einführung neuer Schweißverfahrensvarianten oder Werkstoffe ist aktuell nur mit aufwendigen Untersuchungen möglich. Die Bestimmung der H -Konzentration sowie der HACC erfolgt dabei in getrennten Versuchsaufbauten, welche unterschiedliche Bedingungen an die Schweißaufgabe stellen. Eine standardisierte Methode, die sowohl eine H-Bestimmung als auch die Prüfung der Eigenschaftsdegradation vereint, existiert derzeit nicht. Auch das Normenwerk deckt eine Prüfung der HACC-Beständigkeit für hochfeste Stähle nicht ab bzw. sind bestehende Konzepte (Vorwärmung) nicht zielführend. Für das übergeordnete Ziel der Sicherheit von geschweißten Konstruktionen soll im Rahmen des Forschungsvorhabens eine neuartige Prüfmethode erarbeitet und erprobt werden, die einerseits die Prüfung von H-Gehalt und HACC-Empfindlichkeit vereint und andererseits für die direkte Anwendung beim Verarbeiter (KMU) einfach zu handhaben ist. Hierzu erfolgen vergleichende Untersuchungen an einem HACC sensiblen sowie unempfindlichen Werkstoff mit dem MSG-(FE 1) und dem UP-Prozess (FE 2). Resultat des Forschungsvorhaben ist eine neuartige Prüfmethodik, die einen vereinfachten, universell und insbesondere für KMU geeigneten werkstoff- und verfahrensoffenen Test hinsichtlich der HACC darstellt. Gleichzeitig werden Schweißeinflüsse auf die H-Aufnahme näher charakterisiert sowie eine Methode zur Bestimmung der H-Effusionsdauer in Abhängigkeit von der Materialdicke und Temperatur erarbeitet. Wirtschaftliche Vorteile vor allem für KMU ergeben sich durch eine höhere Sicherheit bei der Verarbeitung der höchstfesten Stähle infolge der Möglichkeit selbstständig zu testen, Nachwärmzeiten zu berechnen und somit Schweißprozeduren in Bezug auf die Wasserstoffabsorption sowie -effusion zu optimieren, wodurch wiederum Prozesszeiten minimiert werden.Die Anwendung der Ergebnisse in KMU und Industrie ist dabei ohne weitere finanzielle Belastungen möglich.

Projekt im Forschungsportal ansehen

Mitwirkung im International Joint Graduate Program in Materials Science (GP-MS) der Tohoku University, Japan
Laufzeit: 01.10.2019 bis 31.12.2024

Das Internationale Graduiertenprogramm der Tohoku Universität in Sendai, Japan, wurde unter Beteiligung zahlreicher Fachkollegen und Fachkolleginnen aus Asien, Europa und den USA im Jahr 2018 eröffnet. Von Seiten der Otto-von-Guericke-Universität Magdeburg sind Frau Prof. Manja Krüger und Herr Dr. Georg Hasemann an dem Programm beteiligt (s. Foto). Wir entwickeln und analysieren gemeinsam mit den japanischen Kollegen Prof. Kyosuke Yoshimi und Ass. Prof. Shuntaro Ida neue Werkstoffe und nutzen dafür die einzigartige Ausstattung in den Laboren der Tohoku Universität in Sendai und der Otto-von-Guericke-Universität Magdeburg.

Projekt im Forschungsportal ansehen

Oxiddispersionsverfestigte, oxidationsresistente Vanadium-Legierungen
Laufzeit: 01.07.2022 bis 31.12.2024

Das komplexe Oxidationsverhalten von Vanadium ist der Grund dafür, dass Vanadiumbasis-Legierungen trotz ihrer hohen Festigkeiten bei gleichzeitig geringer Dichte bisher praktisch nicht für einen Einsatz bei hohen Temperaturen in Erwägung gezogen werden können. Hinzu kommt, dass Vanadat sehr leicht zwischen verschiedenen Oxidationsstufen wechselt und dadurch die Hochtemperaturkorrosion von Ni-, Co- oder Fe-Basiswerkstoffen extrem beschleunigt, besonders, wenn es in geschmolzener Form vorliegt. Damit schließt sich auch ein Einsatz von aktuellen Vanadiumlegierungen im Umfeld dieser Werkstoffe aus.
Um Vanadiumlegierungen bei hohen Temperaturen einsetzbar zu machen, soll daher ein völlig neuartiger und innovativer Ansatz zum Oxidationsschutz bei gleichzeitiger Oxidpartikelverstärkung verfolgt werden: Die Entwicklung von Mg- und Ca-haltigen Oxidpartikeln zur Herstellung von oxidationsbeständigen ODS-Vanadium-Silizium Legierungen. Die in ausreichender Konzentration eingebrachten ODS-Partikel sollen die Flüssigphasenbildung bei hohen Temperaturen verhindern. Gleichzeitig wird durch die ODS-Partikel ein festigkeitssteigernder Effekt erwartet, der im potentiellen Anwendungsgebiet solcher Legierungen von Raumtemperatur bis 1050 °C quantifiziert werden soll.
In dem Vorhaben soll geklärt werden, (1) bis zu welchem Volumenanteil von MgO-, CaO- oder Magnesiumorthosilikat-Partikeln sich homogene Gefüge in Vanadiumwerkstoffen einstellen lassen, (2) wie hoch die notwendige MgO-, CaO- oder Magnesiumorthosilikat-Konzentration ist, um die Flüssigphasenbildung zu verhindern bzw. um einen selbstschützenden Mechanismus zu provozieren, (3) wie groß der festigkeitssteigernde Effekt durch die Zugabe von Oxiddispersoiden ist und wie sich die ODS-Partikel auf das Kriechverhalten von Vanadiumlegierungen auswirken.

Projekt im Forschungsportal ansehen

Vereinfachte Prüfmethode zur Bewertung der Gefahr wasserstoffunterstützter Kaltrisse (HACC) beim Lichtbogenschweißen hochfester Stähle
Laufzeit: 01.09.2022 bis 31.08.2024

Eine Prüfung der wasserstoffunterstützten Kaltrissbildung (HACC) bei der Einführung neuer Schweißverfahrensvarianten oder Werkstoffe ist aktuell nur mit sehr aufwendigen Untersuchungen möglich. Die Bestimmung der H-Gehalte sowie der HACC erfolgt dabei in getrennten Versuchsaufbauten, welche unterschiedliche Bedingungen an die Schweißaufgabe stellen. Eine standardisierte Methode, die sowohl eine H-Bestimmung als auch die Prüfung der Eigenschaftsdegradation vereint, existiert derzeit nicht. Auch das Normenwerk deckt eine Prüfung der HACC-Beständigkeit für hochfeste Stähle nicht ab und bestehende Konzepte (Vorwärmung) sind nicht zielführend. Das Ziel des Forschungsvorhabens besteht in der Erarbeitung und Erprobung einer neuartigen Prüfmethode, die die Prüfung von H-Gehalt und HACC-Empfindlichkeit vereint und zudem auch beim Verarbeiter (KMU) anwendbar ist. Hierzu erfolgen vergleichende Untersuchungen an einem HACC sensiblen sowie unempfindlichen Stahl mit dem MSG- und dem UP-Schweißprozess. Resultat des Forschungsvorhaben ist eine innovative Prüfmethodik, die eine vereinfachte, universell und insbesondere für KMU geeignete werkstoff- und verfahrensoffene HACC-Prüfung ermöglicht.

Projekt im Forschungsportal ansehen

Determining the comminution behavior of plastic particles in milling processes
Laufzeit: 01.09.2022 bis 30.06.2024

The recycling of plastics is an important issue in terms of environmental sustainability, recyclability and of waste management. The development of proper technologies for plastic recycling is generally recognized as a priority. To achieve this aim, the technologies that have been developed and applied in mineral processing can be adapted to recycling systems. In particular, the improvement of comminution technologies is one of the main actions to improve the quality of recycled plastics. The aim of this work is to study the comminution processes in milling for different types of plastic materials.

Projekt im Forschungsportal ansehen

Entwicklung von neuartigen Multi-Komponenten-Werkstoffsystemen für biomedizinische Anwendungen
Laufzeit: 01.07.2021 bis 30.06.2024

Unter dem Begriff Multi-Komponenten-Werkstoffe werden Legierungssysteme zusammengefasst, die im Gegensatz zu herkömmlichen Legierungen (z.B. Fe-C, Al-Si, Ti-Al) nicht auf einer Hauptkomponente basieren, sondern aus einer Vielzahl von Legierungselementen in äquiatomaren oder variierenden Gehalten bestehen. Diese Systeme reichen von der Gruppe der High-Entropy Alloys (HEAs) über Medium-Entropy Alloys (MEAs) bis hin zu Compositionally Complex Alloys (CCAs). Die Besonderheit der Mehrkomponenten-Werkstoffe liegt in deren physikalischen und thermodynamischen Phänomenen (Hochentropieeffekt, Cocktail-Effekt, Effekt der langsamen Diffusion, etc.), welche zu herausragenden mechanischen Werkstoffeigenschaften führen. Besonders in der Entwicklung von Hochtemperaturwerkstoffen haben sich Refraktärmetalle wie Mo, Nb, Ta und Ti als essentielle Komponenten herauskristallisiert. Gleichzeitig sind die genannten Metalle biokompatibel. Diese Eigenschaft wird bei der Entwicklung von Mehrkomponenten-Legierungen für biomedizinische Anwendungen aufgegriffen. Im Zuge des Forschungsvorhabens werden am Lehrstuhl für Hochtemperaturwerkstoffe der Otto-von-Guericke-Universität Magdeburg Werkstoffkonzepte erarbeitet und Legierungen entwickelt, welche im Anschluss in Kooperation mit der Professur für experimentelle Orthopädie, Frau Prof. Dr. rer. nat. Bertrand, auf die Kompatibilität mit verschiedenen biologischen Zelltypen untersucht werden. Ziel des Vorhabens ist es, ein neuartiges Multi-Komponenten-System mit herausragenden mechanischen Eigenschaften bei gleichzeitiger Biokompatibilität für medizintechnische Anwendungen, wie Implantate, zu entwickeln.

Projekt im Forschungsportal ansehen

Aluminium-Schaum durch MIG-Schweißen additiv in Form gebracht (Aladdin) AiF/IGF 22 055 BR
Laufzeit: 01.12.2021 bis 31.05.2024

Ziel des Forschungsvorhabens ist die Herstellung von additiv generierten, dreidimensionalen Aluminiumschaumstrukturen mittels eines additiven MIG-Schweißprozesses (engl.: Wire Arc Additive Manufacturing, WAAM). Im Gegensatz zur konventionellen Herstellung von Aluminiumschäumen in Form vorrangig zweidimensionaler Sandwichplatten erlaubt die additive Verarbeitung ein wesentlich breiteres Spektrum an Geometrien. Potentielle Anwendungen sind hierbei:

  • Additives Schweißen auf Massiv- oder Schaumteilen
  • Verbindungsschweißen von Aluminiumschaumbauteilen
  • Verbindungsschweißen von massiven Aluminium- mit Aluminiumschaumteilen

Um Anwendungen des Leichtbauwerkstoffs Al-Schaum zu erweitern, sollen sowohl das additive Herstellen als auch das Verbindungsschweißen von Aluminiumschaum im Rahmen des Projekts untersucht werden.
In Versuchen wurde bereits bestätigt, dass mit Titandihydrid (TiH2) versetzte Schweißdrähte geeignet sind, um poröse, mehrschichtige Aluminiumschaumstrukturen mit einem MIG-Schweißprozess zu generieren. Aufbauend auf diese Ergebnisse sollen verschiedene, mit entsprechenden Treibmitteln versetzte Schweißdrahttypen bezüglich ihrer technologischen Eignung überprüft werden. Ziel ist es hierbei ideale Prozessparameter zu finden, mit denen ein hochporöses, homogenes Aluminiumschweißgut erzeugt werden kann, das ähnliche Eigenschaften wie Aluminiumschaum besitzt. Besonders mechanische und physikalisch-technologische Eigenschaften wie z.B. Dichtheit gegenüber Flüssigkeitseindringen sollen untersucht werden. Es werden Schäume basierend auf den Legierungen AlSiMg sowie AlSi12 mit Porengrößen < 1 mm angestrebt, da diese eine höhere thermische Stabilität versprechen als großporige Schäume.
Industriepartner können im Rahmen eines Projektausschusses involviert werden. Interessenten sind jederzeit herzlich zur Mitarbeit eingeladen.

Projekt im Forschungsportal ansehen

Letzte Änderung: 13.12.2023 - Ansprechpartner: